Почему следует выбирать приборы класса True RMS? Истинное RМS – единственно правильное измерение Что значит true rms

Точные измерения - трудная задача, стоящая перед технологами и специалистами по обслуживанию современных производств и оборудования различных организаций. В нашу повседневную жизнь все больше и больше входят персональные компьютеры, приводы с регулируемой скоростью и другое оборудование, имеющее несинусоидальные характеристики потребляемого тока и рабочего напряжения (в виде кратковременных импульсов, с искажениями и т.п.). Такое оборудование может вызвать неадекватные показания обычных измерителей с усреднением показаний (вычисляющих среднеквадратическое значение).

Почему следует выбирать приборы класса True-RMS?

Говоря о значениях переменного тока, мы обычно имеем в виду среднюю эффективную выделяемую теплоту или среднеквадратическое (RMS) значение тока. Данное значение эквивалентно значению постоянного тока, действие которого вызвало бы такой же тепловой эффект, что и действие измеряемого переменного тока, и вычисляется по следующей формуле:

.

Самый распространенный способ измерения такого среднеквадратического значения тока при помощи измерительного прибора заключается в выпрямлении переменного тока, определении среднего значения выпрямленного сигнала и умножении результата на коэффициент 1,1 (соотношение между средним и среднеквадратическим значениями идеальной синусоиды).

Однако, при отклонении синусоидальной кривой от идеальной формы данный коэффициент перестает действовать. По этой причине измерители с усреднением показаний зачастую дают неверные результаты при измерении токов в современных силовых сетях.

Линейные и нелинейные нагрузки

Рис. 1. Кривые напряжения синусоидальной и искажённой формы.

Линейные нагрузки, в состав которых входят только резисторы, катушки и конденсаторы, характеризуются синусоидальной кривой тока, поэтому при измерении их параметров проблем не возникает. Однако в случае нелинейных нагрузок, таких как приводы с регулируемой частотой и источники питания для офисного оборудования, при наличии помех от мощных нагрузок имеют место искаженные кривые.

Рис. 2. Кривые тока и напряжения блока питания персонального компьютера.

Измерение среднеквадратического значения токов по таким искаженным кривым с использованием обычных измерителей может дать в зависимости от характера нагрузки значительное занижение истинных результатов:


Класс прибора
Тип нагрузки / формы кривой
ШИМ (меандр) однофазный диодный
выпрямитель
трёхфазный диодный
выпрямитель
RMS корректно завышение на 10% занижение на 40% занижение 5%...30%
True RMS корректно корректно корректно корректно

Поэтому у пользователей обычных приборов возникнет вопрос, почему, например, 14-амперный предохранитель регулярно перегорает, хотя по показаниям амперметра ток составляет всего лишь 10 А.

Приборы класса True RMS (с истинными среднеквадратическими показаниями)

Для измерения тока с искаженными кривыми необходимо при помощи анализатора кривой сигнала проверить форму синусоиды, после чего использовать измеритель с усреднением показаний только в том случае, если кривая окажется действительно идеальной синусоидой. Однако гораздо удобнее постоянно использовать измеритель с истинно среднеквадратическими показаниями (True RMS) и всегда быть уверенным в достоверности измерений. Современные мультиметры и токовые клещи подобного класса используют усовершенствованные технологии измерения, позволяющие определить реальные эффективные значения переменного тока вне зависимости от того, является ли токовая кривая идеальной синусоидой или искажена. Для этого применяются специальные преобразователи, обуславливающие основную разницу в стоимости с бюджетными аналогами. Единственное ограничение - кривая должна находиться в пределах допустимого диапазона измерений используемого прибора.

Все то, что касается особенностей измерения токов нелинейной нагрузки, также верно и для измерения напряжений. Кривые напряжения также зачастую не являются идеальными синусоидами, в результате чего измерители с усреднением показаний дают неверные результаты.

Точные измерения - трудная задача, стоящая перед технологами современных производств и различных организаций. В нашу повседневную жизнь все больше и больше входят персональные компьютеры, приводы с регулируемой скоростью и другое оборудование, которое потребляет ток в виде кратковременных импульсов, а не на постоянном уровне. Такое оборудование может вызвать, по меньшей мере, неадекватные показания обычных измерителей с усредненными показаниями. Если у Вас когда-нибудь без видимой причины сгорал предохранитель, то такой причиной вполне мог быть измерительный прибор.

Измерители с усредненными показаниями
Говоря о значениях переменного тока, мы обычно имеем в виду среднюю эффективную выделяемую теплоту или среднеквадратическое (RMS) значение тока. Данное значение эквивалентно значению постоянного тока, действие которого вызвало бы такой же тепловой эффект, что и действие измеряемого переменного тока. Самый распространенный способ измерения такого среднеквадратического значения тока при помощи измерительного прибора заключается в выпрямлении переменного тока, определении среднего значения выпрямленного сигнала и умножении результата на коэффициент 1,1. Данный коэффициент учитывает постоянную величину, равную соотношению между средним и среднеквадратическим значениями идеальной синусоиды. Однако, при отклонении синусоидальной кривой от идеальной формы данный коэффициент перестает действовать. По этой причине измерители с усредненными показаниями зачастую дают неверные результаты при измерении токов в современных силовых сетях.

Линейные и нелинейные нагрузки
Линейные нагрузки, в состав которых входят только резисторы, катушки и конденсаторы, характеризуются синусоидальной кривой тока, поэтому при измерении их параметров проблем не возникает. Однако в случае нелинейных нагрузок, таких как приводы с регулируемой частотой и источники питания для офисного оборудования, имеют место искаженные токовые кривые. Измерение среднеквадратического значения токов по таким искаженным кривым с использованием измерителей с усредненными показаниями может дать 50% занижение истинных результатов, после чего Вы будете удивляться, почему Ваш 14-амперный предохранитель регулярно сгорает, хотя по показаниям Вашего амперметра ток составляет всего лишь 10 А.

Приборы True RMS (с истинно среднеквадратическими показаниями)
Для измерения тока с такими искаженными кривыми необходимо при помощи анализатора кривой сигнала проверить форму синусоиды, после чего использовать измеритель с усреднением показаний только в том случае, если кривая окажется действительно идеальной синусоидой. Или же можно постоянно использовать измеритель с истинно среднеквадратическими показаниями и не проверять параметры кривой. Современные измерители подобного типа используют усовершенствованные технологии измерения, позволяющие определить реальные эффективные значения переменного тока вне зависимости оттого, является ли токовая кривая идеальной синусоидой или искажена. Единственное ограничение -чтобы кривая находилась в пределах коэффициента амплитуды и допустимого диапазона измерения используемого прибора
.
Измерения напряжения
Все то, что касается измерения токов в современных силовых цепях, также верно и для измерения напряжений в большинстве случаев промышленного оборудования и электронных приборов. Часто кривые напряжения также не являются идеальными синусоидами, в результате чего измерители с усреднением показаний дают неверные результаты. Поэтому для измерения напряжения также рекомендуется использовать измерители типа True-RMS.


Тип измерителя

Принцип измерения

Измерение
синусоиды
Измерение прямоуг. сигнала
Измерение искажённого сигн.
С усреднением показаний Умножение среднего выпрямленного знач. на 1.1 Истинное 10% завышение Завышение до 50%
С истинно среднеквадратическими показаниями Расчет величины теплового эффекта по среднестатическому значению Истинное Истинное Истинное

Среднеквадратичное значение (СКЗ). Действующее или эффективное значение
Истинное среднеквадратичное значение (ИСКЗ)

Root-mean-square (RMS) − среднеквадратичное значение – англ.
True Root-Mean-Square (TRMS) − истинное среднеквадратичное значение – англ.

Для любой периодической функции (например, тока или напряжения) вида f = f(t) среднеквадратичное значение функции определяется как:

то действующее значение периодической несинусоидальной функции выражается формулой

Поскольку Fn − амплитуда n-ой гармоники, то Fn / √2 − действующее значение гармоники. Таким образом, полученное выражение показывает, что действующее значение периодической несинусоидальной функции равно корню квадратному из суммы квадратов действующих значений гармоник и квадрата постоянной слагающей.

Например если, несинусоидальный ток выражается формулой:

то среднеквадратичное значение тока равно:

Все приведённые выше соотношения используются при вычислении в тестерах измеряющих ИСКЗ, в цепях измерения тока ИБП, в анализаторах сети и в др. оборудовании.

Истинное среднеквадратичное значение (ИСКЗ), True Root-Mean-Square (TRMS)

Большинство простых тестеров не могут точно измерять среднеквадратичное значение несинусоидального сигнала (то есть сигнала с большими гармоническими искажениями, например, прямоугольной формы). Они правильно определяют СКЗ напряжения только для синусоидальных сигналов. Если таким прибором измерить СКЗ напряжения прямоугольной формы, то показание будет ошибочным. Причина ошибки – обычные тестеры при вычислении учитывают основную гармонику (для обычной сети – 50 Гц), но не берут в расчет высшие гармоники сигнала.

Для решения данной проблемы существуют особые приборы, точно измеряющие СКЗ с учётом высших гармоник (обычно до 30-50 гармоник). Они маркируются символом TRMS или ИСКЗ (true root-mean-square) – истинное среднеквадратичное значение, True RMS, истинное СКЗ.

Так, например, обычный тестер может измерить с ошибкой напряжение на выходе ИБП с аппроксимированной синусоидой, в то время как тестер «APPA 106 TRUE RMS MULTIMETER» измеряет напряжение (СКЗ) правильно.

Замечания

Для синусоидального сигнала, фазное напряжение в сети (нейтраль – фаза, phase voltage) равно:

UСКЗ ф = Uмакс ф / (√2)

Для синусоидального сигнала, линейное напряжение в сети (фаза – фаза, interlinear voltage) равно:

UСКЗ л = Uмакс л / (√2)

Соотношение между фазным и линейным напряжением:

UСКЗ л = UСКЗ ф * √3

Обозначения:

ф – линейное (напряжение)

л – фазное (напряжение)

СКЗ – среднеквадратичное значение

макс – максимальное или амплитудное значение (напряжения)

Примеры:

Фазному напряжению 220 В соответствует линейное напряжение 380 В

Фазному напряжению 230 В соответствует линейное напряжение 400 В

Фазному напряжению 240 В соответствует линейное напряжение 415 В

Фазное напряжение:

Напряжение в сети 220 В (СКЗ), - амплитудное значение напряжения около ±310 В

Напряжение в сети 230 В (СКЗ), - амплитудное значение напряжения около ±325 В

Напряжение в сети 240 В (СКЗ), - амплитудное значение напряжения около ±340 В

Линейное напряжение:

Напряжение в сети 380 В (СКЗ), - амплитудное значение напряжения около ±537 В

Напряжение в сети 400 В (СКЗ), - амплитудное значение напряжения около ±565 В

Напряжение в сети 415 В (СКЗ), - амплитудное значение напряжения около ±587 В

Ниже приведён обычный пример фазных напряжений в 3-фазной сети:



Г.И. Атабеков Основы Теории Цепей с.176, 434 с.

Вступление

Измерение trueRMS переменного напряжения - задача не совсем простая, не такая, какой она кажется с первого взгляда. Прежде всего потому, что чаще всего приходится измерять не чисто синусоидальное напряжение, а нечто более сложное, усложнённое наличием гармоник шумов.

Поэтому соблазнительно простое решение с детектором среднего значения с пересчётом в ср.кв. значения не работает там, где форма сигнала сильно отличается от синусоидальной или просто неизвестна.

Профессиональные вольтметры ср. кв. значения - это достаточно сложные устройства как по схемотехнике, так и по алгоритмам . В большинстве измерителей, которые носят вспомогательный характер и служат для контроля функционирования, такие сложности и точности не требуются.

Также требуется, чтобы измеритель мог быть собран на самом простом 8-битном микроконтроллере.

Общий принцип измерения

Пусть имеется некое переменное напряжение вида, изображённого на рис. 1.

Квазисинусоидальное напряжение имеет некий квазипериод T.

Преимущество измерения среднеквадратичного значения напряжения в том, что в общем случае время измерения не играет большой роли, оно влияет только на частотную полосу измерения. Большее время даёт большее усреднение, меньшее даёт возможность увидеть кратковременные изменения.

Базовое определение ср. кв. значения выглядит вот таким образом:


где u(t) - мгновенное значение напряжения
T - период измерения

Таким образом, время измерения может быть, вообще говоря, любым.

Для реального измерения реальной аппаратурой для вычисления подинтегрального выражения необходимо проквантовать сигнал с некоторой частотой, заведомо превосходящей не менее, чем в 10 раз частоту квазисинусоиды. При измерении сигналов с частотами в пределах 20 кГц это не представляет проблемы даже для 8-битных микроконтроллеров.

Другое дело, что все стандартные контроллеры имеют однополярное питание. Поэтому измерить мгновенное переменное напряжение в момент отрицательной полуволны не представляется возможным.

В работе предложено довольно остроумное решение, как внести постоянную составляющую в сигнал. Вместе с тем в том решении определение момента, когда стоит начать или закончить процесс вычисления ср. кв. значения представляется довольно громоздким.

В данной работе предлагается метод преодоления этого недостатка, а также вычисление интеграла с большей точностью, что позволяет снизить число точек выборки до минимума.

Особенности аналоговой части измерителя

На рис. 2 показано ядро схемы предварительной аналоговой обработки сигнала.

Сигнал поступает через конденсатор C1 на усилитель-формирователь, собранный на операционном усилителе DA1. Сигнал переменного напряжения замешивается на неинвертирующем входе усилителя с половиной опорного напряжения, которое используется в АЦП. Напряжение выбрано 2.048 В, поскольку в компактных устройствах часто используется напряжение питания +3.6 В и менее. В иных случаях удобно использовать 4.048 В, как в .

С выхода усилителя-формирователя через интегрирующую цепочку R3-C2 сигнал поступает на вход АЦП, который служит для измерения постоянной составляющей сигнала (U0). C усилителя-формирователя сигнал U’ - это измеряемый сигнал, сдвинутый на половину опорного напряжения. Таким образом, чтобы получить переменную составляющую, достаточно вычислить разность U’-U0.
Сигнал U0 используется также в качестве опорного для компаратора DA2. При переходе U’ через значение U0 компаратор вырабатывает перепад, который используется для формирования процедуры прерывания для сбора измерительных отсчётов.

Важно, что во многие современные микроконтроллеры встроены как операционные усилители, так и компараторы, не упоминая АЦП.

Базовый алгоритм

На рис. 3 дан базовый алгоритм для случая измерения величины переменного напряжения с основной частотой 50 Гц.


Запуск измерения может осуществляться по любому внешнему событию вплоть до кнопки, нажимаемой вручную.

После запуска в первую очередь измеряется постоянная составляющая во входном сигнале АЦП, а затем контроллер переходит в ожидание положительного перепада на выходе компаратора. Как только прерывание по перепаду наступает, контроллер делает выборку из 20 точек с временным шагом, соответствующим 1/20 квазипериода.

В алгоритме написано X мс, поскольку низкобюджетный контроллер имеет собственное время задержки. Чтобы измерение происходило в правильные моменты времени, необхоимо учитывать эту задержку. Поэтому реальная задержка будет меньше 1 мс.

В данном примере задержка соответствует измерениям квазисинусоид в диапазоне 50 Гц, но может быть любой в зависимости от квазипериода измеряемого сигнала в пределах быстродействия конкретного контроллера.

При измерениях ср.кв. значения напряжения произвольного квазипериодического сигнала, если априори неизвестно, что это за сигнал, целесообразно измерить его период, используя встроенный в контроллер таймер и тот же выход компаратора. И уже на основании этого замера устанавливать задержку при осуществлении выборки.

Вычисление среднеквадратичного значения

После того, как АЦП создал выборку, имеем массив значений U"[i], всего 21 значение, включая значение U0. Теперь, если применить формулу Симпсона (точнее, Котеса) для численного интергрирования, как наиболее точную для данного применения, то получим следующее выражение:

где h - шаг измерения, а нулевой компонент формулы отсутствует, поскольку он равег 0 по определению.

В результате вычисления мы получим значение интеграла в чистом виде в формате отсчётов АЦП. Для перевода в реальные значения полученное значение нужно промасштабировать с учётом величины опорного напряжения и поделить на интервал времени интегрирования.

где Uоп - опорное напряжение АЦП.

Если всё пересчитать в мВ, K приблизительно равняется просто 2. Масштабный коэффициент относится к разностям в квадратных скобках. После пересчёта и вычисления S делим на интервал измерения. С учётом множителя h фактически получаем деление на целое число вместо умножения на h с последующим делением на интервал времени измерения.

И в финале извлекаем квадратный корень.

И вот тут самое интересное и сложное наступает. Можно, разумеется, использовать плавающую точку для вычислений, поскольку язык C это допускает даже для 8-битных контроллеров, и производить вычисления непосредственно по приведённым формулам. Однако скорость расчёта упадёт существенно. Также можно выйти за пределы весьма небольшого ОЗУ микроконтроллера.

Чтобы такого не было, нужно, как верно указано в , использовать фиксированную точку и оперировать максимум 16-битными словами.

Автору эту проблему удалось решить и измерять напряжение с погрешностью Uоп/1024, т.е. для приведённого примера с точностью 2 мВ при общем диапазоне измерения ±500 мВ при напряжении питания +3.3 В, что достаточно для многих задач мониторинга процессов.

Программная хитрость состоит в том, чтобы все процессы деления, по возможности, делать до процессов умножения или возведения в степень, чтобы промежуточный результат операций не превышал 65535 (или 32768 для действий со знаком).

Конкретное программное решение выходит за рамки данной статьи.

Заключение

В данной статье рассмотрены особенности измерения среднеквадратичных значений напряжения с помощью 8-битных микроконтроллеров, показан вариант схемной реализации и основной алгоритм получения отсчётов квантования реального квазисинусоидального сигнала.

Не всегда для проведения измерений требуется только правильно подключить измерительный прибор. Очень важно ответить себе на вопрос: зачем я это измеряю? Для измерения тока при проверке выделения тепла в проводе требуется один параметр, для измерения тока, чтобы определить уровень заряда конденсатора или батареи — совсем другой.

Параметры могут быть выражены в виде средней величины, среднеквадратического значения (RMS , Root Mean Square ), мгновенного или пикового значения. Важен не только тип нагрузки, но также, имеем мы дело с переменным или постоянным током и как выглядит форма напряжения и тока. Тесно связаными с понятиями напряжения и тока являются мощность и энергия.

Мгновенные значения

Мгновенные ток , напряжение и мощность — это значения, соответствующие конкретному моменту времени . Любой сигнал состоит из бесконечного числа мгновенных значений. В случае с напряжением это записывается как .

Рассмотрим цепь, состоящую из последовательно соединененных резистора и катушки индуктивности, подключенных к источнику синусоидального напряжения с пиковым напряжением и частотой Гц .

Синусоидальное напряжение, как функцию времени, в этом случае, можно записать как:

(1)

Ток имеет максимальное значение и сдвинут на по отношению к напряжению:

(2)

Мощность, как функция времени, представляет собой соответствующие мгновенные значения напряжения и тока:

(3)

На рисунке ниже представлены графики напряжения, тока и мощности.

Для примера линией серого цвета показаны мгновенные значения для момента времени мс :

v (4.2) = 2.906 В

i (4.2) = 0.538 А

p (4.2) = 1.563 Вт

В определенный момент времени, мгновенные напряжение и ток всегда можно умножить, рассчитав мгновенную мощность.

Средние значения

Средние значения — это наиболее часто часто используемые параметры.

Если мультиметр устанавливается для измерения значений на постоянном токе, измеряются средние значения напряжения и тока. Кроме того, если мультиметр работает в режиме измерений постоянного тока, то для сигналов на переменном токе также будут измерены средние значения напряжения или тока. В случае симметричного переменного напряжения, мультиметр покажет , что является правильным значением.

Напряжение и ток

Среднее значение является суммой всех произведений мгновенных значений , деленное на число произведенных измерений. Если измерения производятся бесконечное число раз, то мы можем перейти к пределу, в котором промежуток времени измерения → 0 и сумма превратится в интеграл. В общем виде:

(4)

Для напряжения мы получим:

(5)

Мультиметр

Как упоминалось ранее, мультиметр, переведонный в режим измерений на постоянном токе, измеряет среднее значение напряжения или тока. В цифровых приборах, это среднее получается с помощью RC -фильтра. Входной сигнал непрерывно усредняется по постоянной времени . В виде формулы:

(6)

Усреднение напряжения RC-фильтром

Энергия и мощность

Уравнение (3) показывает, что результатом произведения мгновенного напряжения и тока является мгновенная мощность . Если просуммировать мгновенную мощность, умноженную на бесконечно малое время , то результатом будет энергия. Так как :

(7)

Действительно, энергия есть мощность, умноженная на время: , и энергетические пакеты можно всегда сложить для расчета полной энергии.

В качестве примера, опять возьмем последовательное соединение катушки индуктивности и резистора. На рисунке ниже черной линией показана динамика энергии во времени, рассчитанная в соответствии с уравнением (7).

Кривая мощности в случае напряжения и тока переменной полярности, также имеет периодическое изменение амплитуды с удвоенной частотой. Поскольку энергия рассеивается на сопротивлении, область серого цвета положительных значений кривой мощности больше, чем отрицательной области.

Значение энергии (черная линия) в любой момент времени равно площади под кривой мощности до этого момента. Хорошо видно, что энергия периодически возрастает сильнее, чем падает в результате амплитудной асимметрии кривой мощности относительно оси .

На рисунке показан период времени . Энергия внутри этого временного интервала , которая поступила в систему обозначена и вычисляется следующим образом:

(8)

Средняя мощность за определенный период времени равна общему количеству энергии, за это время, деленному на время измерений:

(9)

Если это подставить в уравнение (8), среднюю мощность можно вычислить для любой .

(10)

Это уравнение получено в соответствии с (4). Активная мощность всегда является средней мощностью.

Это уравнение для расчета средней рассеиваемой мощности всегда справедливо, потому что расчет основан на мгновенных значениях. Не имеет значения, является ток постоянным или переменным, как выглядит форма напряжения и тока и есть ли сдвиг фаз между напряжением и током.

Уравнение для расчета средней мощности лежит в основе метода, применяемого в измерителях мощности. Счетчики электроэнергии дома и на предприятиях работают в соответствии с уравнением (8), которое можно переписать в виде:

(11)

Верхний предел в интеграле — момент времени, в который счетчик энергии считывает значение.

Эффективные (RMS ) значения

Среднеквадратическим (RMS ), или эффективным значением является значение напряжения или тока, при котором на нагрузке рассеивается та же мощность, что и при постоянном напряжении или токе.
При переменном напряжении с эффективным значением 230В будет выделяться такое же количество тепла на нагрузке, как и при постоянном напряжении 230В . Действующее значение относится только к выделению тепла на резистивной нагрузке. Для примера, значение RMS тока полезно для измерения напряжения под нагрузкой в проводе (= резистивная), но не для измерения зарядного тока батареи или конденсатора (= поток электронов).

Средне квадратическое значение

RMS является аббревиатурой от Root Mean Square , что буквально переводится как среднеквадратическое значение.

Над напряжением или током, как функциями времени, для вычисления значения RMS последовательно проводятся три математические операции: возведение в квадрат, усреднение и извлечение квадратного корня. Почему так?

Мощность, выделяемая на резисторе, подключенным к источнику напряжения:

(12)

Для мгновенных мощности и напряжения:

(13)

Вычисление средней мощности как функции времени показано в (10). можем подстваить из (13):

(14)

Так как — константа, то ее можно вынести за интеграл:

(15)

Перенеся напряжение в уравнении (12) в левую часть, мы можем расчитать напряжение по средней мощности и сопротивлению:

(16)

Затем, вычисленную среднюю мощность из (15), подставим в уравнение (16):

(17)

Сократив значения сопротивлений , получим:

(18)

Хорошо видно, что это уравнение состоит из трех частей: квадрата , среднего и квадратного корня.

В приведенных выше выкладках вычислялось значение напряжения на резисторе. Аналогично можно сделать и для тока через резистор:

(19)

Большинство мультиметров не может вычислить эффективное значение измеряемого напряжения. Чтобы узнать среднеквадратическое значение, обычно необходим специальный прибор.

На рисунке ниже показано, как вычисляет измеряемое напряжение прибор True RMS (истинные среднеквадратические значения). True RMS прибор, на практике, использует несколько иной метод работы, в котором необходим только один умножитель. Аналоговые умножители должны иметь очень низкий температурный дрейф и смещение, что делает эти инструменты достаточно дорогими.

Аналоговая схема получения RMS-значений

Кроме того, можно сделать расчет RMS программным путем с последовательных цифровых значений измеряемых напряжений. Этот подход обычно используется в мультиметрах и .

Псевдо RMS

Большинство мультиметров не измеряет RMS -значений, когда выбран режим переменного тока. Тем не менее, они, кажется, дают эффективные значения при измерениях переменных напряжений и токов. Но отображаемые значения действительны только при измерениях синусоидального сигнала.

Простой прибор сначала выпрямляет измеряемый сигнал. Затем RC -фильтр нижних частот выделяет среднее значение, которое масштабируется таким образом, что прибор показывает эффективное значение. В виде уравнения:

(20)

Недостатком такого подхода является то, что это подходит только для синусоидальных сигналов. Для любой другой формы сигнала будет получено ошибочное эффективное значение.

Номинальная мощность?

Особенно в аудиотехнике широко используется термин «Номинальная мощность» или . Это по определению ошибочный термин.

Чуть выше, говоря про энергию и мощность, показано, что рабочая мощность рассчитывается из общего количества энергии, деленного на время за которое эта энергия измеряется, см. уравнение (9). Полная энергия определяется путем суммирования всех мгновенный пакетов энергии , см. уравнение (11​​). Это единственно правильный путь для расчета активной мощности.

Как выше указано, эффективное значение эквивалентно постоянному напряжению или току, при которых выделится такая же мощность на том же сопротивлении. Этот показатель рассчитывается как квадратный корень из среднего значения квадрата мгновенного напряжения (или тока). Нет причин думать, что эти три математические операции должны производиться для мгновенной мощности. Это было бы бессмысленное значение.