Словарь измерительных приборов. Измерительные приборы дома: почему их использование так необходимо? Какие бывают домашние измерительные приборы

В современном бурном ритме жизни бытовая техника позволяет быстро и эффективно справляться с домашними делами. Зачастую она полностью выполняет работу за человека. Бытовые приборы имеют классификацию по целевому назначению.

Измерительные приборы

Основная мелкая техника для измерения различных параметров включает в себя:

  • Кухонные весы (с чашей, плоские, в виде графина для определения точного веса, с креплениями для подвешивания).
  • Напольные весы для определения веса человека. Для взвешивания детей до десяти килограмм производятся специальные весы с кюветом.
  • Безмены. Призваны заменить весы вне дома (рыбалка, дача, рынок).
  • Часы (напольные, настольные, каминные). Производятся механические и электронные.
  • Будильники. Могу выполняться из различных материалов (дерево, пластик, стекло, камень, металл).
  • Термометры для измерения температуры тела, воздуха в помещении и на улице, температуры воды.

Вычислительная техника

Без техники данного рода современный человек уже не представляет своего существования. К ней относятся:

Кухонная техника

Самый обширный сегмент. По назначению делится на несколько подгрупп.

Для сохранения продуктов

Кратковременное сохранение продуктов от порчи выполняют холодильники. Для более длительного сохранения путём замораживания подходят морозильники.

Для механической обработки

Избавляет от самой трудной и неприятной работы. Миксер даёт возможность быстро смешать жидкие компоненты. Он применяется для приготовления напитков, кремов, пюре, теста. Измельчить более плотные и твёрдые продукты можно с помощью блендера. Превращение мяса в фарш выполняет мясорубка. Совместить все функции в одном приборе позволяет кухонный комбайн.

Для термической обработки

Включает электрическую или газовую плиты. Большой популярностью пользуются индукционные плиты, разогревающие специальную посуду с помощью индукционного тока. Для выпечки производятся духовые шкафы, позволяющие использовать разные режимы запекания.

Не менее функциональными являются микроволновые печи, хлебопечки, мультиварки, пароварки. Благодаря данной бытовой технике пища получается вкусной и полезной. Достаточно поместить туда необходимые ингредиенты, установить режим и нажать на кнопку.

К более мелким бытовым приборам относятся:

  • гриль (жарит мясо на решетке или вертеле);
  • аэрогриль (готовит еду путем обдувания горячим воздухом);
  • фритюрница (продукты готовятся в горячем масле);
  • тостер;
  • вафельница;
  • блинница;
  • йогуртница;
  • проращиватели для зерен и прочие.

Для приготовления напитков

По-настоящему вкусный кофе сварит кофеварка из зёрен, измельчённых в кофемолке. Ещё более функциональным инструментом является кофемашина. Возможность закипятить воду, чтобы заварить чай, дают электрочайники. Для приготовления витаминизированных коктейлей и соков понадобится соковыжималка.

Вспомогательная техника

После приготовления еды остаётся невымытая посуда. С этим помогает справляться посудомоечная машина. Для предотвращения попадания запаха, дыма, испарений в кухню над плитой устанавливаются вытяжки. Нагреть воду позволяют электроводонагреватели.

Техника для уборки дома

Основным прибором для уборки помещений является пылесос. Он может быть моющим, совмещая функции удаления пыли и мойки полов. Для устранения загрязнений различного рода (жир, плесень, налёт) с поверхности стёкол, кранов, кафеля без химических средств выпускаются паровые очистители и даже паровые швабры.

Техника для ухода за одеждой

Содержать одежду в чистоте и аккуратности призваны следующие «помощники»:
  • Стиральная машина для удаления загрязнений с одежды и прочих изделий из текстиля.
  • Сушильная машина. Этот складной стол с крышкой из жаропрочного материала способен высушить и погладить одежду.
  • Гладильная доска. На её поверхность укладывается мятая одежда. В комплект обычно входит держатель шнура, подставка для утюга, колодка для утюжки рукавов.
  • Утюг. Посредством воздействия температуры и влаги на одежду устраняются замины.
  • Швейная машина. Позволяет изготовить или отремонтировать одежду, удлинить или укоротить изделие. Современные машинки умеют вышивать, пришивать пуговицы, обмётывать петли и выполнять большой спектр отделочных строчек.
  • Машинка для стрижки катышков, сушилки для обуви.

Техника для создания комфортного микроклимата

К таковой относятся:
  • кондиционеры (нагревает, охлаждает и очищает воздух);
  • очистители (очищает воздух);
  • мойки и увлажнители воздуха (очищают и увлажняют);
  • отопительные радиаторы (повышают температуру воздуха);
  • вентиляторы (обдувают потоком воздуха);
  • ионизаторы воздуха (делают воздух свежим и чистым).
  • метеостанции (измерят и покажут основные параметры микроклимата).
Многие приборы климатической техники объединяют в себе несколько функций. Например, очиститель с увлажнителем, кондиционер с ионизатором и так далее.

Мелкая бытовая техника для ухода за внешностью

Привести волосы в порядок помогают фены для сушки и укладки, щипцы для завивания локонов, утюжок для выпрямления прядей. В борьбе с ненужной «растительностью» призваны помогать эпиляторы и электробритвы. Первые удаляют волоски с корнем, вторые срезают, оставляя луковицу целой. В ванной можно встретить ирригаторы (электрические зубные щетки) и массажеры.

Техника для отдыха и развлечения

Благодаря вышеперечисленным домашним помощникам остаётся свободное время. Его можно провести за прослушиванием музыки или просмотром любимой передачи или фильма. Для этих целей существует следующая техника:
  • музыкальный центр (предназначен для воспроизведения разного рода носителей);
  • плеер (воспроизводит аудио и видео файлы);
  • DVD-проигрыватель (считывает и воспроизводит DVD-диски);
  • телевизор;
  • игровая приставка;
  • радио приёмник.
К более сложным системам относятся домашние кинотеатры и акустическая аппаратура. Запечатлеть приятные моменты способны фотоаппараты и видеокамеры. Удовлетворить желание пообщаться на расстоянии помогают телефонные аппараты.

Мария Вялых
Женские ножки.ru

Понравилась статья? Поделись ей с другими:

Интересного общения - (для работы комментариев необходим включенный джава-скрипт в браузере): Please enable JavaScript to view the

Общее предназначение измерительных приборов заключается в контроле норм, допустимых для здоровья. В применении они обычно максимально просты.

Это могут быть:

  • показатели чистоты, которые определяет tds метр ;
  • уровень температуры – его можно узнать с помощью пирометра;
  • количество света, показатель которого важен для фотографов и работников типографии, находят с помощью люксметра и т.д.

Можно сказать, что все подобные приборы относятся к востребованным, но не находящимся под рукой. Причина в том, что пока не возникнет необходимость, мало кому приходит в голову обзавестись мини-оборудованием для измерения. Но если в случае с люксметром вполне закономерно, что фотограф заметит его явную необходимость, то те же тдс-метры могут так и остаться в списке непризнанных, хотя они и жизненно важны.

Чистая вода – залог здоровья

Причин для покупки тдс-метра несколько, так как сфера деятельности такого измерителя – определение уровня чистоты воды. Приобретая фильтр для воды, многие успокаиваются, считая, что теперь им достается чистая и безвредная вода. Это самообман. Сегодня котельные поставляют настолько загрязненную всяческими примесями воду, что одной очистки ей может быть мало. К тому же, картриджи максимально согласно своим возможностям очищают воду только в начальный период эксплуатации.

Впоследствии вода все еще может проходить через забивающиеся фильтры, но при этом уже ни о какой очистке не будет речи. Наличие в доме прибора, контролирующего работу фильтров, положительно скажется на здоровье всех членов семьи.

Как известно, вода является необходимым продуктом, потребление которого невозможно сократить или исключить. Наличие в воде ненужных примесей опасно для здоровья, так как поступление их в организм является регулярным.

Измерительные приборы прочно вошли в жизнь человека. За счет обширной классификации измерительных приборов можно определить именно тот аппарат, который понадобится для конкретных операций. Это могут быть как простейшие, по типу рулетки или амперметра, так и мультифункциональные измерительные приборы. При выборе устройства следует ориентироваться на его предназначение и основные характеристики.

Общие сведения


Измерительным прибором называют такое устройство, которое позволяет получить значение некоторой физической величины в заданном диапазоне. Последний задается с помощью приборной шкалы. А также технические приборы позволяют переводить величины в более понятную форму, которая доступна определенному оператору.

В настоящее время список измерительных приборов довольно широк, но большинство из них предназначается для контроля за проведением технологического процесса . Таким может быть датчик температуры или охлаждения в кондиционерах, нагревательных печах и других устройствах со сложной конструкцией.

Среди наименований измерительных инструментов есть как простые, так и сложные, в том числе и по конструкции. Причем сфера их применения может быть как узкоспециализированной, так и распространенной.

Чтобы узнать больше сведений о конкретном инструменте, необходимо рассмотреть определенную классификацию контрольно-измерительных устройств и приборов.

В зависимости от того, какие бывают измерительные инструменты, их названия могут отличаться в разных классификациях.


Обычно приборы могут быть следующего вида :

  • Аналоговые измерительные инструменты и устройства, в которых сигнал на выходе является некоторой функцией измеряемой величины.
  • Цифровые устройства, где сигнал на выходе представлен в соответствующем виде.
  • Приборы, которые непосредственно регистрируют результаты измерений снимаемых показаний.
  • Суммирующие и интегрирующие. Первые выдают показания в виде суммы нескольких величин, а вторые позволяют проинтегрировать значение измеряемой величины при помощи другого параметра.

Вышеописанные приборы являются наиболее распространенными и применяются для измерения ряда физических величин. Сложность происходящих физических процессов требует применения нескольких приборов, причисляемых к разным классам.

Классификация устройств


В разных сферах применяется своя классификация устройств, предназначенных для измерения физических величин.

Приборы могут делиться по таким критериям :

  1. Способ преобразования: прямое действие, сравнение, смешанное преобразование.
  2. По способу выдачи информации делятся на показывающие и регистрирующие.
  3. Вид выходной информации может быть представлен как аналоговым, так и цифровым сигналом.

Регистрирующие устройства делятся на самопишущие и печатающие разновидности. Наиболее прогрессивным вариантом являются самопишущие аппараты, поскольку у них выше точность предоставления информации и шире возможности для измерения заданных ранее параметров.

Аналоговые и цифровые


Контрольно-цифровые инструменты могут быть как цифровыми, так и аналоговыми. Первые считаются более удобными. В них показатели силы, напряжения или тока переводятся в числа, затем выводятся на экран.

Но при этом внутри каждого такого прибора находится аналоговый преобразователь. Зачастую он представляет собой датчик, снимающий и отправляющий показания с целью преобразования их в цифровой код.

Хотя аналоговые инструменты менее точны, они обладают простотой и лучшей надежностью. А также существуют разновидности аналоговых инструментов и приборов, имеющих в своем составе усилители и преобразователи величин. По ряду причин они предпочтительнее механических устройств.

Для давления и тока

Каждому еще со школы или университета знакомы такие названия измерительных приборов, как барометры и амперметры. Первые предназначены для того, чтобы измерять атмосферное давление. Встречаются жидкостные и механические барометры.


Жидкостные разновидности считаются профессиональными из-за сложности конструкции и особенностей работы с ними. Метеостанции применяют барометры, заполненные внутри ртутью. Они наиболее точные и надежные, позволяют работать при перепадах температур и иных обстоятельствах. Механические конструкции проще, но постепенно их вытесняют цифровые аналоги.

Амперметры используются для измерения электрического тока в амперах. Шкала амперметра может градуироваться как в стандартных амперах, так и микро- , милли- и килоамперах. Лучше всего такие приборы подключать последовательно. В таком случае снижается сопротивление, а точность снимаемых показателей возрастает.

Слесарные инструменты


Достаточно часто можно встретить измерительные слесарные инструменты. Наиболее важная характеристика - точность измерений. За счет того, что слесарные инструменты механические, удается добиться точности до 0,005 или 0,1 мм.

Если погрешность измерений превысит допустимый порог, то произойдет нарушение технологии работы инструмента. Тогда потребуется переточка некачественной детали или замена целого узла в устройстве. Поэтому для слесаря важно при подгонке вала под втулку использовать не линейку, а инструменты с большей точностью измерений.

Наиболее популярным инструментом с высокой точностью измерений является штангенциркуль . Но и он не сможет дать гарантии точного результата с первого измерения. Опытные рабочие делают несколько измерений, которые затем преобразуют в некоторое среднее значение.

Встречаются операции, требующие максимальной точности. Таких много в микромашинах и отдельных деталях устройств крупного размера. Тогда следует воспользоваться микрометром. С его помощью можно измерять с точностью до сотых долей миллиметров. Распространенное заблуждение о том, что он позволяет измерять микроны, является не совсем верным. Да и при проведении стандартных домашних работ такая точность может не пригодиться, поскольку достаточно действующих значений точности и погрешности.

Специальные устройства

Существует такое известное устройство для измерения под названием угломер.


Его предназначение заключается в измерении углов деталей, а конструкция состоит из следующих элементов :

  • непосредственно устройство имеет полудиск с нанесенной измерительной шкалой;
  • линейка обладает собственным передвижным сектором, где нанесена шкала нониуса;
  • закрепление передвижного сектора линейки осуществляется стопорным винтом.

Процесс измерения таким прибором простой. Деталь прикладывается одной из граней к линейке. Сдвинуть ее надо таким образом, чтобы образовался равномерный и достаточный просвет между гранями и линейками. Затем сектор закрепляется винтом. Снимаются показатели сначала с линейки, а затем с нониуса.

Контрольно-измерительные устройства нашли довольно широкое применение в различных сферах производства, домашнего быта, слесарного дела и строительных работ. Они различаются как по сфере применения, так и по возможности измерения.

Все приборы могут подразделяться по способу преобразования, выдачи информации и виду выходной информации, предназначения и другим критериям. Имея хорошую классификацию, можно отыскать конкретный инструмент для определенных задач и операций.

Измеритель солнечного излучения (люксметр)

В помощь техническим и научным сотрудникам разработано немало измерительных приборов, призванных обеспечить точность, удобство и эффективность работы. Вместе с тем, для большинства людей названия этих приборов, а тем более принцип их работы, зачастую незнакомы. В этой статье мы в краткой форме раскроем предназначение самых распространенных измерительных приборов. Информацией и изображениями приборов с нами поделился сайт одного из поставщиков измерительных приборов .

Анализатор спектра - это измерительный прибор, который служит для наблюдения и измерения относительного распределения энергии электрических (электромагнитных) колебаний в полосе частот.

Анемометр – прибор, предназначенный для измерения скорости, объема воздушного потока в помещении. Анемометр применяют для санитарно-гигиенического анализа территорий.

Балометр – измерительный прибор для прямого измерения объёмного расхода воздуха на крупных приточных и вытяжных вентиляционных решетках.

Вольтметр - это прибор, которым измеряют напряжение.

Газоанализатор - измерительный прибор для определения качественного и количественного состава смесей газов. Газоанализаторы бывают ручного действия или автоматические. Примеры газоанализаторов: течеискатель фреонов, течеискатель углеводородного топлива, анализатор сажевого числа, анализатор дымовых газов, кислородомер, водородомер.

Гигрометр – это измерительный прибор, который служит для измерения и контроля влажности воздуха.

Дальномер – прибор, измеряющий расстояние. Дальномер позволяет также вычислять площадь и объем объекта.

Дозиметр – прибор, предназначенный для обнаружения и измерения радиоактивных излучений.

Измеритель RLC – радиоизмерительный прибор, используемый для определения полной проводимости электрической цепи и параметров полного сопротивления. RLC в названии является абревиатурой схемных названий элементов, параметры которых могут измеряться этим прибором: R - Сопротивление, С - Ёмкость, L - Индуктивность.

Измеритель мощности – прибор, который используется для измерения мощности электромагнитных колебаний генераторов, усилителей, радиопередатчиков и других устройств, работающих в высокочастотном, СВЧ и оптическом диапазонах. Виды измерителей: измерители поглощаемой мощности и измерители проходящей мощности.

Измеритель нелинейных искажений – прибор, предназначенный для измерения коэффициента нелинейных искажений (коэффициента гармоник) сигналов в радиотехнических устройствах.

Калибратор – специальная эталонная мера, которую используют для поверки, калибровки или градуировки измерительных приборов.

Омметр, или измеритель сопротивления – это прибор, используемый для измерения сопротивления электрическому току в омах. Разновидности омметров в зависимости от чувствительности: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры.

Токовые клещи – инструмент, который предназначен для измерения величины протекающего тока в проводнике. Токовые клещи позволяют проводить измерения без разрыва электрической цепи и без нарушения ее работы.

Толщиномер - это прибор, при помощи которого можно с высокой точностью и без нарушения целостности покрытия, измерить его толщину на металлической поверхности (например, слоя краски или лака, слоя ржавчины, грунтовки, или любого другого неметаллического покрытия, нанесенного на металлическую поверхность).

Люксметр – это прибор для измерения степени освещенности в видимой области спектра. Измерители освещения представляют собой цифровые, высокочувствительные приборы, такие как люксметр, яркомер, пульсметр, УФ-радиометр.

Манометр – прибор, измеряющий давление жидкостей и газов. Виды манометров: общетехнические, коррозионностойкие, напоромеры, электроконтактные.

Мультиметр – это портативный вольтметр, который выполняет одновременно несколько функций. Мультиметр предназначен для измерения постоянного и переменного напряжения, силы тока, сопротивления, частоты, температуры, а также позволяет осуществлять прозвонку цепи и тестирование диодов.

Осциллограф – это измерительный прибор, позволяющий осуществлять наблюдение и запись, измерения амплитудных и временны́х параметров электрического сигнала. Виды осциллографов: аналоговые и цифровые, портативные и настольные

Пирометр - это прибор для бесконтактного измерения температуры объекта. Принцип действия пирометра основан на измерении мощности теплового излучения объекта измерения в диапазоне инфракрасного излучения и видимого света. От оптического разрешения зависит точность измерения температуры на расстоянии.

Тахометр – это прибор, позволяющий измерять скорость вращения и количество оборотов вращающихся механизмов. Виды тахометров: контактные и бесконтактные.

Тепловизор – это устройство, предназначенное для наблюдения нагретых объектов по их собственному тепловому излучению. Тепловизор позволяет преобразовывать инфракрасное излучение в электрические сигналы, которые затем в свою очередь после усиления и автоматической обработки преобразуются в видимое изображение объектов.

Термогигрометр – это измерительный прибор, выполняющий одновременно функции измерения температуры и влажности.

Трассодефектоискатель – это универсальный измерительный прибор, который позволяет на местности определять местоположение и направление кабельных линий и металлических трубопроводов, а также определять место и характер их повреждения.

pH-метр – это измерительный прибор, предназначенный для измерения водородного показателя (показателя pH).

Частотомер – измерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала.

Шумомер – прибор для измерения звуковых колебаний.

Таблица: Единицы измерения и обозначения некоторых физических величин.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter

Огромная подборка схем, руководств, инструкций и другой документации на различные виды измерительной техники заводского изготовления: мультиметры, осциллографы, анализаторы спектра, аттенюаторы, генераторы, измерители R-L-C, АЧХ, нелинейных искажений, сопротивлений, частотомеры, калибраторы и многое другое измерительное оборудование.

В процессе эксплуатации внутри оксидных конденсаторов постоянно происходят электрохимические процессы, разрушающие место соединения вывода с обкладками. И из-за этого появляется переходное сопротивление, достигающее иногда десятков Ом. Токи Заряда и разряда вызывают нагрев этого места, что еще больше ускоряет процесс разрушения. Еще одной частой причиной выхода из строя электролитических конденсаторов является "высыхание", электролита. Чтоб уметь отбраковывать такие конденсаторы предлагаем радиолюбителям собрать эту несложную схему

Идентификация и проверка стабилитронов оказывается несколько сложнее чем проверка диодов, т.к для этого нужен источник напряжения, превышающий напряжение стабилизации.

С помощью этой самодельной приставки вы сможете одновременно наблюдать на экране однолучевого осциллографа сразу за восемью низкочастотными или импульсными процессами. Максимальная частота входных сигналов не должна превышать 1 МГц. По амплитуде сигналы должны не сильно отличаться, по крайней мере, не должно быть более 3-5-кратного отличия.

Устройство расчитано на проверку почти всех отечественных цифровых интегральных микросхем. Им можно проверить микросхемы серий К155, К158, К131, К133, К531, К533, К555, КР1531, КР1533, К176, К511, К561, К1109 и многие другие

Помимо измерения емкости, эту приставку можно использовать для измерения Uстаб у стабилитронов и проверки полупроводниковых приборов, транзисторов, диодов. Кроме того можно проверять высоковольтные конденсаторы на токи утечки, что весьма помогло мне при налаживание силового инвертора к одному медицинскому прибору

Эта приставка к частотомеру используется для оценки и измерения индуктивности в диапазоне от 0,2 мкГн до 4 Гн. А если из схемы исключить конденсатор С1 то при подключении на вход приставки катушки с конденсатором, на выходе будет резонансная частота. Кроме того, благодаря малому значению напряжения на контуре можно оценивать индуктивность катушки непосредственно в схеме, без демонтажа, я думаю многие ремонтники оценят эту возможность.

В интернете много разных схем цифровых термометров, но мы выбрали те которые отличается своей простотой, малым количеством радиоэлементов и надежностью, а пугаться того, что она собрана на микроконтроллере не стоит, т.к его очень легко запрограммировать.

Одну из схем самодельного индикатора температуры со светодиодным индикатором на датчике LM35 можно использовать для визуальной индикации плюсовых значений температуры внутри холодильника и двигателя автомобиля, а также воды в аквариуме или бассейне и т.п. Индикация выполнена на десяти обычных светодиодах подключенных к специализированной микросхеме LM3914 которая используется для включения индикаторов с линейной шкалой, и все внутренние сопротивления ее делителя обладают одинаковыми номиналами

Если перед вами встанет вопрос как измерить частоту вращения двигателя от стиральной машины. Мы подскажем простой ответ. Конечно можно собрать простой стробоскоп, но существует и более грамотная идея, например использованием датчика Холла

Две очень простые схемы часов на микроконтроллере PIC и AVR. Основа первой схемы микроконтроллер AVR Attiny2313, а второй PIC16F628A

Итак, хочу сегодня рассмотреть очередной проект на микроконтроллерах, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровой вольтметр на микроконтроллере. Схема его была позаимствована из журнала радио за 2010 год и может быть с легкостью переделана под амперметр.

Эта конструкция описывает простой вольтметр, с индикатороми на двенадцати светодиодах. Данное измерительное устройство позволяет отображать измеряемое напряжение в диапазоне значений от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении очень низкая.

Рассмотрена схема измерителя индуктивности катушек и емкости конденсаторов, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек.

Думаю большинству понятно, что звучание системы во многом определяется различным уровнем сигнала на ее отдельных участках. Контролируя эти места, мы можем оценить динамику работы различных функциональных узлов системы: получить косвенные данные о коэффициенте усиления, вносимых искажениях и т.п. Кроме того, результирующий сигнал просто не всегда можно прослушать, поэтому и, применяются различного рода индикаторы уровня.

В электронных конструкциях и системах встречаются неисправности, которые возникают достаточно редко и их очень сложно вычислить. Предлагаемое самодельное измерительное устройство используется для поиска возможных контактных проблем, а также дает возможность проверять состояние кабелей и отдельных жил в них.

Основой этой схемы является микроконтроллер AVR ATmega32. ЖК дисплей с разрешением 128 х 64 точек. Схема осциллографа на микроконтроллере предельно проста. Но есть один существенный минус - это достаточно низкая частота измеряемого сигнала, всего лишь 5 кГц.

Эта приставка здорово облегчит жизнь радиолюбителя, в случае если у него появится необходимость в намотке самодельной катушки индуктивности, или для определения неизвестных параметров катушки в какой либо аппаратуре.

Предлагаем вам повторить электронную часть схемы весов на микроконтроллере с тензодатчиком, прошивка и чертеж печатной платы к радиолюбительской разработке прилагаеться.

Самодельный измерительный тестер обладает следующими Функциональными возможностями: измерение частоты в диапазоне от 0.1 до 15000000 Гц с возможностью изменения времени измерения и отображением значение частоты и длительности на цифровом экране. Наличие опции генератора с возможностью регулировки частоты во всем диапазоне от 1-100 Гц и выводом результатов на дисплей. Наличие опции осциллограф с возможностью визуализации формы сигнала и измерения его амплитудного значения. Функция измерения емкости, сопротивления, а также напряжения в режиме осциллографа.

Простым методом измерения тока в электрической цепи является способ измерение падения напряжения на резисторе, соединенным последовательно с нагрузкой. Но при протекании тока через это сопротивление, на нем генерируется ненужная мощность в виде тепла, поэтому его необходимо выбрать минимально возможной величиной, что ощутимо усиливает полезный сигнал. Следует добавить, что рассмотренные ниже схемы позволяют отлично измерять не только постоянный, но и импульсный ток, правда, с некоторым искажением, определяемый полосой пропускания усилительных компонентов.

Устройство используется для измерения температуры и относительной влажности воздуха. В качестве первичного преобразователя взят датчик влажности и температуры DHT-11. Самодельный измерительный прибор можно использовать в складских и жилых помещениях для мониторинга температуры и влажности, при условии, что не требуется высокая точность результатов измерений.

В основном для измерения температуры применяются температурные датчики. Они имеют различные параметры, стоимость и формы исполнения. Но у них имеется один большой минус, ограничивающий практику их использования в некоторых местах с большой температурой среды объекта измерения с температурой выше +125 градусов по Цельсию. В этих случаях намного выгоднее использовать термопары.

Схема межвиткового тестора и его работа довольна проста и доступна для сборки даже начинающими электронщиками. Благодаря этому прибору сможно проверить практически любые трансформаторы, генераторы, дроссели и катушеки индуктивности номиналом от 200 мкГн до 2 Гн. Индикатор способен определить не только целостность исследуемой обмотки, но и отлично выявляет межвитковое замыкание, а кроме того им можно проверить p-n переходы у кремниевых полупроводниковых диодов.

Для измерения такой электротехнической величины, как сопротивление используется измерительный прибор называемый Омметр. Приборы, измеряющие только одно сопротивление, в радиолюбительской практике используются достаточно редко. Основная масса пользуется типовым мультиметров в режиме измерения сопротивления. В рамках данной темы рассмотрим простую схему Омметра из журнала Радио и еще более простую на плате Arduino.

БМК-Миха , самый главный недостаток этого прибора это низкое разрешение - 0,1Ом которое невозможно повысить чисто программным путём. Если бы не этот недостаток, прибор был бы идеальным!
Диапазоны оригинальной схемы: ESR=0-100Ом, C=0pF-5000µF.
Хочу обратить особое внимание на то что прибор до сих пор находится в процессе доработки как программной так и аппаратной, однако продолжает активно эксплуатироваться.
Мои доработки относительно:
Аппаратные
0. Убрал R4,R5. Сопротивление резисторов R2,R3 уменьшил до 1,13К, и подобрал пару с точностью до одного ома (0,1%). Таким образом увеличил тестовый ток с 1мА до 2мА, при этом уменьшилась нелинейность источника тока (за счёт удаления R4,R5), повысилось падение напряжение на конденсаторе что способствует увеличению точности измерения ESR.
Ну и конечно подкорректировал Кусил. U5b.
1. Ввёл фильтры питания на входе и выходе преобразователя +5V/-5V (на фото платка стоящая вертикально и есть преобразователь с фильтрами)
2. поставил разъём ICSP
3. ввёл кнопку переключения режимов R/C (в "оригинале" режимы переключались аналоговым сигналом поступающим на RA2 , происхождение которого в статье описывается крайне туманно...)
4. Ввёл кнопку принудительной калибровки
5. Ввёл зуммер подтверждающий нажатие кнопок и подающий сигнал включённости каждые 2 минуты.
6. Умощнил инверторы их параллельным попарным включением (при тестовом токе в 1-2мА не обязательно, просто мечтал повысить ток измерения до 10мА, что до сих пор не удалось)
7. Последовательно с Р2 поставил резистор 51ом (во избежании КЗ).
8.Выв. регулировки контрастности зашунтировал конденсатором 100нф(напаял на индикатор). Без него при касании отвёрткой движка Р7 индикатор начинал потреблять 300мА! Чуть LM2930 не спалил вместе с индикатором!
9.на питание каждой МС поставил блокировочный конденсатор.
10. скорректировал печатную плату.
Программные
1. убрал режим DC (скорее всего верну его обратно)
2. Ввёл табличную коррекцию нелинейности (при R>10Ом).
3. ограничил диапазон ESR до 50Ом (с оригинальной прошивкой прибор "зашкаливал" при 75,6 Ом)
4. дописал подпрограмму калибровки
5. написал поддержку кнопок и зуммера
6. ввёл индикацию заряда батареи - цифры от 0 до 5 в последнем разряде дисплея.

В блок измерения ёмкости не вмешивался ни программно ни аппаратно, за исключением добавления резистора последовательно с Р2.
Принципиальную схему отражающую все доработки пока не начертил.
прибор был очень чувствителен к влажности! как дыхнёшь на него так показания начинают "плыть" .Всему виной большое сопротивление R19, R18,R25,R22. Кстати может мне кто нибудь объяснить, нах*ена каскаду на U5a такое большое входное сопротивление???
Короче говоря, аналоговую часть залил лаком - после чего чувствительность полностью пропала.

Журнал ELEKTOR насколько я знаю, немецкий, авторы статей немцы и печатают его в Германии, по крайней мере немецкую версию.
m.ix , давайте шутить во флейме

Здесь рассматриваются вопросы самостоятельного изготовления и эксплуатации измерительных приборов, используемых в радиолюбительской практике.

Самодельные радиолюбительские измерительные приборы.

Самодельные и промышленные измерительные приборы на базе компьютера.

Измерительные приборы промышленного производства.

Обновляемый файловый архив по теме "Измерительные приборы" находится , со временем, я надеюсь подготовить обзор с комментариями.

Функциональный генератор качающейся частоты и тональных посылок.

Настоящая статья - отчёт о проделанной работе, выполненной в начале нулевых годов, в те времена, самостоятельное изготовление измерительных приборов и оснастки своих лабораторий для радиолюбителей считалось обычным делом. Надеюсь, таковые увлечённые и заинтересованные умельцы встречаются и теперь.

Прототипами для рассматриваемого ФГКЧ стали «Генератор тональных посылок» Николая Сухова (Радио №10 1981 стр. 37 – 40)

и «Приставка к осциллографу для наблюдения АЧХ» О. Сучкова (Радио № 1985 стр 24)

Схема приставки О. Сучкова:

Разработанный на основе указанных источников и другой литературы (см. Заметки на полях схемы) ФГКЧ формирует напряжения синусоидальной, треугольной и прямоугольной (меандр) формы, амплитудой 0 – 5В со ступенчатым ослаблением –20, -40, -60 дБ в диапазоне частот 70Гц – 80КГц. Регуляторами ФГКЧ можно задать любой участок качания или значения перескока частоты, при формировании пачек, внутри рабочего диапазона частот.

Управление и синхронизация перестройки частот, осуществляется нарастающим пилообразным напряжением развёртки осциллографа.

ФГКЧ позволяет оперативно оценить АЧХ, линейность, динамический диапазон, реакцию на импульсные сигналы и быстродействие аналоговых радиоэлектронных устройств звукового диапазона.

Схема ФГКЧ представлена на Рисунке .

Схема в высоком разрешении находится или загружается по клику на рисунок.

В режиме качающейся частоты, на вход ОУ А4 подаётся пилообразное напряжение из блока развёртки осциллографа (как и в схеме ГКЧ О. Сучкова). Если на вход управления частотой А4 подавать не пилу, а меандр, частота будет меняться скачком с низкой на высокую. Формирование меандра из пилы, производится обычным триггером Шмитта, на транзисторах Т1 и Т2, разной проводимости. C выхода ТШ меандр поступает на электронный ключ А1 К1014КТ1, предназначенный для согласования уровня напряжения управляющего перестройкой ФГКЧ по частоте. На вход ключа подаётся напряжение +15В, с выхода ключа, прямоугольный сигнал подаётся на вход ОУ А4. Переключение частоты происходит в средней части горизонтальной развёртки, синхронно. После ОУ А4 стоят два ЭП на транзисторах Т7 - ПНП и Т8 - НПН (для термокомпенсации и выравнивания сдвига уровня) В эмиттере Т7 стоит переменный резистор RR1, задающий нижнюю границу качания или формирования пачек импульсов в диапазоне 70Гц - 16КГц. Резистор R8 (по Сучкову) заменён на два RR2 - 200КОм и RR3 - 68 КОм. RR2 задаёт верхнюю границу диапазона качания 6,5 - 16,5 КГц, а RR3 - 16,5 - 80 КГц. Интегратор на ОУ А7, тришшег Шмитта на ОУ А7 и коммутатор фазы коэффициента передачи усилителя А5 – Т11, работают как описано в О. Сучкова.

После буферного усилителя на ОУ А7 стоит переключатель формы сигнала с подстроечными резисторами PR6 – подстройка уровня треугольного сигнала и PR7 – подстройка уровня меандра. нормирующими уровень выходных сигналов. Формирователь синусоидального сигнала состоит из ОУ А8 – не инвертирующему усилителя с подстройкой усиления в диапазоне 1 - 3 раза (подстроечным резистором PR3) и классического преобразователя пилообразного напряжения в синусоидальное на полевом транзисторе Т12 - КП303Е. С истока Т12, синусоидальный сигнал подаётся на селектор формы импульса S2 напрямую, так как уровень синусоидального сигнала определяется нормирующим усилителем на ОУ А8 и величиной PR3. С выхода регулятора уровня RR4, сигнал подаётся на буферный усилитель на умощнённом А9. Коэффициент усиления буферного усилителя около 6, задаётся резистором в цепи обратной связи ОУ. На транзисторах Т9б Т10 и переключателях S3, S5, собран узел синхронизации, используемый для проверки тракта записи - воспроизведения магнитофона, в настоящее время совершенно не актуальный. Все ОУ - с ПТ на входе (К140 УД8 и К544УД2). Стабилизатор напряжения питания двухполярный +/- 15В, собран на ОУ А2 и А3 - К140УД6 и транзисторах Т3 - КТ973, Т4 - КТ972. Источники тока стабилитронов опорного напряжения на ПТ Т5, Т6 - КП302В.

Работа с рассматриваемым функциональным ГКЧ, производится следующим образом.

Переключатель S1 «Режим», устанавливается в положение «Fниз» и переменным резистором RR1 «Fниз» устанавливается нижняя частота диапазона качания, или меньшая частота пачек импульсов, в диапазоне 70Гц – 16КГц. После этого, переключатель S1 «Режим», устанавливается в положение «Fверх» и переменными резисторами RR2 «6-16КГц» и RR3 «16 – 80КГц» задаётся верхняя частота диапазона качания, или бОльшая частота пачек импульсов, в диапазоне 16 – 80 КГц. Далее переключатель S1 переводится в положение «Кач» или «Пачки» для формирования выходного напряжения качающейся частоты или двух пачек импульсов меньшей и бОльшей частоты, сменяющихся синхронно с развёрткой, при прохождении луча через середину экрана (для пачек импульсов). Форма выходного сигнала выбирается переключателем S2. Уровень сигнала регулируется плавно переменным резистором RR4 и ступенчато – переключателем S4.

Осциллограммы испытательных сигналов в режимах «Качание частоты» и «Пачки» представлены на следующих рисунках.

Фото генератора в сборе, представлено на рисунке.

В том же корпусе широкополосный генератор синусоидального напряжения и меандра (Важно: R6 в схеме этого генератора – 560КОм, а не 560Ом, как на рисунке, и если вместо R9 поставить пару из постоянного резистора 510Ком и подстроечного 100Ком, можно, регулировкой подстроечника, установить минимально возможный Кг.)

и частотомера, прототип которого описан в.

Важно отметить, что в дополнение к проверкам аналоговых трактов звуковоспроизводящей аппаратуры, в режимах качания частоты и формирования пачек частотных посылок, рассматриваемый функциональный ГКЧ можно использовать и просто как функциональный генератор. Сигналы треугольной формы помогают очень чётко отследить возникновение ограничения в усилительных каскадах, выставить ограничения сигнала симметричным (борьба с чётными гармониками – более заметными на слух), проконтролировать наличие искажений типа «ступенька» и оценить линейность каскада по мере искривления фронта и спада треугольного сигнала.

Ещё более интересна проверка УМЗЧ и других звуковых узлов, сигналом прямоугольной формы, со скважностью 2 – меандром. Считается, что для корректного воспроизведения меандра определённой частоты, требуется, чтобы рабочая (без ослабления) полоса тестируемого такта, была, по меньшей мере, в десять раз больше, чем частота испытательного меандра. В свою очередь, ширина полосы частот, воспроизводимых, например, УМЗЧ определяет такой важный качественный показатель, как коэффициент интермодуляционных искажений, столь значительный для, ламповых УМЗЧ, что его благоразумно не измеряют и не публикуют, чтобы не разочаровывать общественность.

На следующем рисунке – фрагмент статьи Ю. Солнцева «Функциональный» генератор» из Радиоежегодника.

На рисунке – типовые искажения меандра, возникающие в звуковом тракте, и их толкования.

Ещё более наглядными, измерения при помощи функционального генератора, можно производить, подавая сигнал с его выхода на вход X осциллографа, напрямую, и на вход Y через исследуемое устройство. В этом случае на экране будет отображаться амплитудная характеристика проверяемой схемы. Примеры таких измерений приведены на рисунке.

Вы можете повторить мой вариант функционального ГКЧ, как он есть или принять его за альфа – версию Вашей собственной разработки, выполненной на современной элементной базе, с применением схемотехнических решений, которые Вы считаете более прогрессивными или доступными в реализации. В любом случае, применение такого многофункционального измерительного устройства, позволит Вам существенно упростить настройку звуковоспроизводящих трактов и контролируемо повысить их качественные характеристики в процессе разработки. Это конечно справедливо только в том случае, если вы считаете, что настраивать схемы «на слух» - весьма сомнительный приём радиолюбительской практики.

Автомат включения ждущего режима для осциллографа С1-73 и других осциллографов с регулятором «Стабильность».

Пользователи советских и импортных осциллографов, оснащённых регулятором режима развёртки «Стабильность», сталкивались в работе со следующим неудобством. При получении на экране устойчивой синхронизации сложного сигнала, стабильное изображение сохраняется до тех пор, пока на вход подаётся сигнал или его уровень остаётся достаточно стабильным. При исчезновении входного сигнала, развёртка может оставаться в ждущем режиме сколь угодно долго, при этом луч на экране отсутствует. Для переключения развёртки в автоколебательный режим, иногда достаточно лишь чуть повернуть ручку «Стабильность», и луч появляется на экране, что требуется при привязке горизонтальной развёртки к масштабной сетке на экране. При возобновлении измерений, изображение на экране может «плыть» до тех пор, пока регулятором «Стабильность» не будет восстановлен ждущий режим развёртки.

Таким образом, в процессе измерений, приходится постоянно крутить ручки «Стабильность» и «Уровень синхронизации», что замедляет процесс измерений и отвлекает оператора.

Предлагаемая доработка осциллографа C1-73 и других, подобных ему приборов (С1-49, С1-68 и др) оснащённых регулятором «Стабильность», предусматривает автоматическое изменение выходного напряжения переменного резистора регулятора «Стабильность», переводящее блок развёртки осциллографа в автоколебательный режим при отсутствии входного синхросигнала.

Схема автоматического переключателя «Ждущий – Авто» для осциллографа С1-73, приведена на рисунке 1.

Рисунок 1 . Схема автоматического переключателя «Ждущий – Авто» для осциллографа С1-73 (кликни для увеличения).

На транзисторах Т1 и Т2 собран одновибратор, запускаемый, через конденсатор С1 и диод D1 импульсами положительной полярности с выхода формирователя импульсов запуска развёртки осциллографа С1-73 (контрольная точка 2Гн-3 блока У2-4 на рисунке 2)

Рисунок 2

(полностью, схема осциллографа С1-73 находится здесь: (Fig5) и (Gif 6)

В исходном состоянии, при отсутствии запускающих развёртку импульсов, все транзисторы автомата «Ждущий – Авто» закрыты (см. Рис. 1). Диод D7 открыт и на правый по схеме (см Рис. 2) вывод переменного резистора R8 «Стабильность», по цепи R11 D7, подаётся постоянное напряжение, переводящее генератор развёртки в автоколебательный режим, при любом положении движка переменного резистора R8 «Стаьильность».

По приходу очередного импульса, запуска развёртки, последовательно открываются транзисторы T2, T1, T3, T4, а диод D7 закрывается. С этого момента схема синхронизации развёртки осциллографа С1-73, работает в типовом режиме, заданном напряжением на выходе переменного резистора R8 (см. Рис. 2). В частном случае, может быть задан ждущий режим развёртки, обеспечивающий стабильное положение изображения исследуемого сигнала на экране осциллографа.

Как было отмечен выше, при поступлении очередного синхроимпульса, все транзисторы автомата управления развёрткой открываются, что приводит к быстрой разрядке электролитического конденсатора C4 через диод D4, открытый транзистор Т2 и резистор R5. Конденсатор C4 находится в разряженном состоянии всё то время, пока на вход одновибратора поступают запускающие импульсы. По окончании поступления импульсов запуска, транзистор T2 закрывается, и конденсатор C4 начинает заряжаться базовым током транзистора T3 через резистор R7 и диод D5. Ток зарядки конденсатора C4, поддерживает открытыми транзисторы T3 и T4, сохраняя ждущий режим развёртки, заданный напряжением на выходе переменного резистора R8 «Стабильность» в течение нескольких сотен миллисекунд, в ожидании следующего сихроимпульса. Если таковой не поступает, транзистор T3 закрывается полностью, светодиод D6, индицирующий включение ждущего режима, гаснет, закрывается транзистор T4, открывается диод D7 и развёртка осциллографа переходит в автоколебательный режим. Для обеспечения ускоренного перехода в ждущий режим, при поступлении первого синхроимпульса в серии, применён элемент «Логическое ИЛИ» на диодах D3 и D5. При срабатывании одновибратора, приводящем к открыванию транзистора T2, транзистор T3 открывается без задержки, по цепи R7,D3,R5 ещё до окончания разряда конденсатора C4. Это может быть важно, если требуется наблюдать одиночные импульсы в ждущем режиме синхронизации.

Сборка автомата ждущего режима выполнена объёмным монтажом.

Рисунок 3. Объёмный монтаж автомата ждущего режима осциллографа.

Рисунок 4. Изоляция элементов автомата ждущего режима осциллографа бумажными вставками и расплавленным парафином.

Перед монтажом, модуль завёрнут в полоску бумаги, проклеенную прозрачным скотчем, как минимум с одной стороны, так же для уменьшения утечек. Сторона бумаги, поклеенная скотчем, обращена к собранному модулю. Объёмный монтаж автомата позволил сократить время сборки и отказаться от разработки и изготовления печатной платы. Кроме того, модули получились достаточно компактными, что важно при их установке в малоразмерный корпус осциллографа С1-73. В отличие от заливки устройства, собранного объёмным монтажом, эпоксидным компаундом и тп твердеющими смолами, использование парафина позволяет сохранить ремонтопригодность устройства и возможность его доработки, при необходимости. В радиолюбительской практике, при штучном производстве, это может быть важным фактором выбора конструктивного исполнения устройства.

Вид автомата ждущего режима, смонтированного на плате У2-4, осциллографа С1-73, показан на рисунке 5.

Рисунок 5. Размещение модуля автомата ждущего режима на плате синхронизации осциллографа С1-73.

Светодиод, индицирующий включение ждущего режима, размешён на 15 мм правее регулятора УРОВЕНЬ, как показано на рисунке 6.

Рисунок 6. Размещение индикатора включения ждущего режима на лицевой панели осциллографа C1-73.

Опыт эксплуатации осциллографа С1-73, оснащённого автоматом включения ждущего режима развёртки, показал значительное увеличение оперативности измерений, связанное с отсутствием необходимости вращать ручку СТАБИЛЬНОСТЬ, при установке линии развёртки на желаемое деление градуировочной сетки экрана и после этого, для достижения устойчивого положения изображения на экране. Теперь, в начале измерений, достаточно установить регуляторы УРОВЕНЬ и СТАБИЛЬНОСТЬ, в положение, обеспечивающее неподвижное изображение сигнала на экране, и при снятии сигнала со входа осциллографа, горизонтальная линия развёртки появляется автоматически, а при очередной подаче сигнала возвращается стабильная картинка.

Вы можете приобрести подобный автомат ждущего режима осциллографа, сэкономив время на сборку. Используйте кнопку обратной связи. :-)

Блок защиты и автоотключения мультиметра M830 и ему подобных «Цифровых китайских мультиметров».

Цифровые мультиметры, построенные на АЦП семейства (отечественный аналог), благодаря своей простоте, достаточно высокой точности и низкой стоимости, очень широко используются в радиолюбительской практике.

Некоторое неудобство использования прибора связано с:

  1. Отсутствием автоотключения мультиметра
  2. относительной дороговизной девятивольтовых батарей большой ёмкости
  3. отсутствием защиты от перенапряжения (за исключением плавкого предохранителя на 0,25А)

Различные способы решения вышеупомянутых проблем предлагались радиолюбителями раньше. Некоторые из них (схемы защиты АЦП мультиметра, автоотключения, и его питания от низковольтных источников питания, через повышающий преобразователь, приведены доработок и измерительных приставок к мультиметрам семейства M830.

Предлагаю Вашему вниманию ещё один вариант доработки «цифрового китайского мультиметра» на АЦП 7106, сочетающей четыре важных, для таких приборов, потребительских функции:Автоотключение по таймеру через несколько минут после включения.

  1. Защита от перенапряжения с гальваническим отключением входного гнезда UIR от схемы мультметра.
  2. Автоотключение при срабатывании защиты.
  3. Полуавтоматическая отсрочка автоотключения при длительных измерениях.

Для пояснения принципов работы и взаимодействия узлов китайского мультиметра на IC7106 используем две схемы.

Рис.1 - один из вариантов схемы мультиметра M830B (кликни, чтобы увеличить).

Схема Вашего мультиметра может быть другой или её может не быть вообще – важно лишь определить точки подачи питания на ИС АЦП и точки подключения контактов реле, отключающих питание и вход UIR прибора. Для этого, обычно, достаточно внимательно рассмотреть печатную плату мультиметра, справляясь по даташиту на IC7106 или КР572ПВ5. Точки подключения и врезки в схему / печатный монтаж мультиметра показаны синим цветом.



Рис.2 Собственно схема блоказащиты и автоотключения мультиметра (кликни, чтобы увеличить).

Схема включает датчики перегрузки мультиметра на транзисторных оптронах U1 и U2 – АОТ128, Компаратор на ОУ с низким током потребления – U3 КР140УД1208, ключевой МОП-транзистор U4 таймера автоотключения – КР1014КТ1. Коммутация входа UIR и напряжения питания мультиметра, выполняется контактными группами двухобмоточного поляризованного реле PR1 – РПС-46.

Работа блока защиты и автоотключения мультиметра.

Включение мультиметра и автоотключение по стабатыванию таймера.

В исходном состоянии все элементы мультиметра и блока защиты обесточены. Перекидные контакты поляризованного реле PR1 замкнуты в положениях 1-4 и 6-9 (см рис. 2 ). Вход UIR мультиметра, отключён, входной делитель замкнут на общий провод – разъём «COM». «Плюсовой» вывод батареи питания отключён от всех потребителей так как кнопка Кн1 «Вкл» и контакты 5-9 реле PR1 разомкнуты. Электролитический конденсатор C2, ёмкость которого определяет время работы мультиметра до автоотключения, разряжен через замкнутые контакты 6-9 реле PR1 и схему мультиметра.

При нажатии на кнопку Кн1 «Вкл», ток от батареи питания, проходя через обмотку 2-8 реле PR1, заряжает конденсатор С2. При этом контакты 6-9 и 1-4 размыкаются, а контакты 5-9 и 10-4 замыкаются. Вход UIR мультиметра, подключается к схеме замкнутыми контактами 10 – 4, реле PR1, а питание от батареи, подаётся через замкнутые контакты 5 – 9, соответственно. В штатных режимах работы мультиметра, напряжение с вывода 37 ЦАП IC7106, подаваемое на инвертирующий вход (вывод 2), ОУ U3, оказывается больше напряжения заданного на прямом входе (вывод 3), на выходе ОУ, вывод 6, устанавливается напряжение низкого уровня, недостаточное, для открывания транзистора Т1. Электролитический конденсатор, заряженный при нажатии кнопки Кн1 «Вкл», через обмотку 2 – 8 реле PR1 до напряжения питания (9В), после отпускания кнопки Кн1, начинает медленно разряжаться через делитель R11,R12. До тех пор, напряжение на затворе МОП-транзистора U4 не снизится до уровня, примерно, 2В, транзистор U4 остаётся в открытом состоянии, поддерживая диод D6 в закрытом состоянии.

Мультиметр работает в обычном режиме.

При падении напряжения на делителе R11,R12 ниже уровня 2В, транзистор U4 закрывается, положительное напряжение через резистор R13 и диод D6 поступает на вывод 3 ОУ4, что приводит к появлению положительного потенциала на выходе ОУ (вывод 6) и открыванию транзистора Т1, коллектор которого подключён к выводу 7 реле PR1. Через обмотку 3 – 7 реле PR1, вызывает обратное переключение контактных групп реле PR1. При этом оказываются разомкнутыми контакты 10 – 4 (вход UIR мультиметра отключается) и 5 – 9 (батарея питания отключается от схемы). Происходит автоотключение мультиметра с размыканием входной цепи.

Полуавтоматическая отсрочка срабатывания таймера автоотключения.

Если во время работы мультиметра повторно нажать кнопку Кн1 «Вкл», ток, проходя через обмотку 2 – 8 реле PR1, произведёт подзарядку конденсатора C2, продлевая временной промежуток включённого состояния мультиметра. Состояние контактных групп поляризованного реле PR1, при этом, не изменяется.

Принудительное отключение мультиметра.

Принудительное отключение мультиметра можно выполнить двумя способами.

  1. Как обычно, переведя переключатель выбора пределов/ режимов измерения в положение OFF – «Выключено». При этом состояние контактных групп поляризованного реле PR1, при этом, не изменяется и вход UIR останентся подключённым к резистивному делителю мультиметра.
  2. При нажатии на кнопку Кн2 «Выкл», положительное напряжение, через резистор R5, подаётся на вход 3 ОУ U3, повышая его потенциал, по сравнению с опорным напряжением (-1В) на инвертирующем входе ОУ U3 - выводе 2. Это приводит к открыванию транзистора Т1 и появлению тока в «отключающей» обмотке 3 – 7, поляризованного реле PR1. При этом оказываются разомкнутыми контакты 10 – 4 (вход UIR мультиметра отключается) и 5 – 9 (батарея питания отключается от схемы). Происходит автоотключение мультиметра с размыканием входной цепи.

Автоотключение мультиметра при возникновении перегрузки.

Наиболее вероятной причиной выхода из строя, мультиметра на основе АЦП семейства 7106, является подача на его измерительный вход (вывод 31), напряжения, превышающего напряжение питания приложенное к выводу 1, относительно общего провода (вывод 32). В общем случае, при питании мультиметра от батареи напряжением 9В, не рекомендуется подавать на вход ЦАП, вывод 31, напряжение, более 3В, в любой полярности. В описанных ранее схемах защиты цифрового мультиметра типа M830, предлагалось включит пару встречно – параллельно включённых стабилитронов между входом ЦАП и общим проводом. При этом, высокоомный резистор входного RC ФНЧ ЦАП (R17C104 в схеме на Рис. 1 ), ограничивал ток через стабилитроны на безопасном уровне, однако резистивный делитель мультиметра и токоведущие дорожки печатной платы оставались незащищёнными, играя роль дополнительных предохранителей и сгорая при перегрузке.

В предлагаемом блоке защиты и автоотключения мультиметра, повышенное, сверх допустимого, напряжение на входе ФНЧ R17C104 (См. Рис. 1), используется для формирования сигнала отключения входного гнезда, с шунтированием сигнального входа мультиметра на корпус. Сигнал о наличии перенапряжения, формируется двумя встречно-параллельно включёнными цепями D1, D2, U1.1 и D3, D4, U2.1, состоящими из последовательно соединённых: кремниевого диода, светодиода зелёного свечения и светодиода диодно-транзисторного оптрона. Подобные цепи, выполняющие, так же, функцию пассивной защиты, широко используются во входных каскадах осциллографов (например,). При достижении, в точке А, напряжения, превышающего 3В, в любой полярности, диоды (D1, D2, U1.1 или D3, D4, U2.1), в соответствующей цепочке начинают открываться, шунтируя вход мультиметра на общий провод. При этом светодиод U1.1 или U2.1 одной из оптопар, начинает светиться, вызывая открывание соответствующего оптотранзистора U1.2 или U2.2. Ток, с плюсовой шины питания, через открывшийся оптотранзистор, подаётся на неинвертирующий вход ОУ U3, вызывая повышение потенциала на выходе ОУ (вывод 6) и открывание транзистора Т1. Ток через транзистор Т1 и подключённую к нему обмотку 3 – 7, поляризованного реле PR1, приводит к размыканию контактов 10 – 4 (вход UIR мультиметра отключается) и 5 – 9 (батарея питания отключается от схемы). Происходит автоотключение мультиметра с размыканием входной цепи.

Мультиметр переходит в выключенное состояние с размыканием входа UIR.

Конструктивно, модуль защиты и автоотключения напряжения, выполнен навесным монтажом и размещён в корпусе мультимера, с обратной стороны переключателя диапазонов измерения. (см. рис. 3 )

В доработанных мультиметрах марки DT830-C (0 ), отсутствует режим измерения коэффициента усиления транзисторов, что позволило разместить кнопки включения и выключения прибора на месте, где обычно устанавливается клеммная колодка подключения транзисторов. Кнопка выключения взята с более высоким толкателем, чтобы при переноске и хранении, при случайных нажатиях, она срабатывала с большей вероятностью.

Практика использования устройства защиты и автоотключения, реализованного в двух китайских цифровых

При работе, можно действовать двумя способами, предварительно выбрав проводимость и тип транзистора (биполярный/ полевой (про полевой – далее)).

1) Подключаем транзистор, и крутим ручку базового резистора до появления генерации. Так понимаем, что транзистор исправен и имеет определённый коэффициент передачи.

2) Выставляем заранее требуемый коэффициент передачи и, подключая, по порядку, имеющиеся транзисторы, отбираем соответствующие установленному требованию.

Я сделал этому измерителю две доработки.

1) Отдельная фиксируемая кнопка включает в «базу» проверяемого транзистора резистор, сопротивлением 100 КОм, заземленный с другой стороны. Так измеритель может проверять полевые транзисторы с p-n переходом и p или n каналом (КП103 КП303 и им подобные). Также, без переделки, в этом режиме можно проверять МОП транзисторы с изолированным затвором n- и p- типа (IRF540 IRF9540 итп)

2) В коллектор второго транзистора измерительного мультивибратора (выход НЧ сигнала) я включил детектор с удвоением, по обычной схеме нагруженный на базу КТ 315го. Таким образом, К- Э переход этого ключевого транзистора замыкается, когда в измерительном мультивибраторе возникает генерация (определён коэффициент передачи). Ключевой транзистор, открываясь, заземляет эмиттер ещё одного транзистора, на котором собран простейший генератор с резонатором на трёхвыводном пьезоэлементе – типовая схема генератора вызывного сигнала «китайского» телефона. Фрагмент схемы мультиметра – узел проверки транзисторов – приведён на Рис. 3.

Такое схемное награмаждение было вызвано желанием использовать тот же вызывной генератор в узле сигнализации перегрузки по току лабораторного блока питания (первый, собранный мной, по упомянутой схеме, испытатель параметров транзисторов, был встроен в ЛБП Рис.4).

Второй измеритель был встроен самодельный в многофункциональный стрелочный мультиметр, где один трёхвыводной пьезоизлучатель использовался как сигнализатор в режиме «пробник» (звуковая проверка короткого замыкания) и испытатель транзисторов Рис. 5.

Теоретически (я не пробовал), этот испытатель можно переделать для проверки мощных транзисторов, уменьшив, например, на порядок сопротивления резисторов в обвязке проверяемого транзистора.

Так же, возможно зафиксировать резистор в базовой цепи (1КОм или 10 КОм) и изменять сопротивление в коллекторной цепи (для мощных транзисторов).

Авометром, схема которого показана па рис. 21, можно измерять: постоянные токи от 10 до 600 ма; постоянные напряжения от 15 до 600 в; переменные напряжения от 15 до 600 в; сопротивления от 10 ом до 2 Мом; напряжения высоких частот 100 кгц-100 Мгц в пределах от 0,1 до 40 в. коэффициент усиления транзисторов по току В до 200.

Для измерения напряжений высокой частоты используется выносной пробник (ВЧ головка).

Внешний вид авометра и ВЧ головки показан на рис. 22.

Прибор монтируют в корпусе из алюминия или в пластмассовой коробочке размерами примерно 200X115X50 мм. Лицевая панель из листового текстолита или гетинакса толщиной 2 мм. Корпус и переднюю панель можно также сделать из фанеры толщиной 3 мм, пропитанной бакелитовым лаком.

Рис. 21. Схема авометра.

Детали. Микроамперметр типа М-84 на ток 100 мка с внутренним сопротивлением 1 500 ом. Переменный резистор типа ТК с выключателем Вк1. Выключатель надо снять с корпуса резистора, повернуть на 180° и поставить на прежнее место. Такое изменение делают для того, чтобы контакты включателя замыкались, когда резистор полностью выведен. Если этого не сделать, то универсальный шунт будет всегда подключен к прибору, уменьшая его чувствительность.

Все постоянные резисторы, кроме R4-R7, должны быть с допуском номиналов сопротивлений не более ±5%. Резисторы R4-R7 шунтирующие прибор при измерении токов, - проволочные.

Выносной пробник для измерения напряжений высокой частоты размещают в алюминиевом корпусе от электролитического конденсатора Его детали монтируют на пластинке из оргстекла. На ней же крепят два контакта от штепсельной вилки, которые являются входом пробника. Проводники входной цепи надо располагать возможно дальше от проводников выходной цепи пробника.

Полярность диода пробника должна быть только такой, как на схеме. Иначе стрелка прибора будет отклоняться в обратную сторону. То же касается и диодов авометра.

Универсальный шунт изготовляют из проволоки с большим удельным сопротивлением и монтируют непосредственно на гнездах. Для R5-R7 подойдет константановая проволока диаметром 0,3 мм, а для R4 можно использовать резистор типа ВС-1 сопротивлением 1400 ом, намотав на его корпус константановую проволоку диаметром 0,01 мм, чтобы их общее сопротивление было 1 468 ом.

Рис 22. Внешний вид авометра.

Градуировка. Шкала авометра показана на рис. 23. Градуировку шкалы вольтметра производят по эталонному контрольному вольтметру постоянного напряжения по схеме, показанной на рис. 24, а. Источником постоянного напряжения (не менее 20 в) может быть низковольтный выпрямитель или батарея, составленная из четырех КБС-Л-0,50. Поворачивая движок переменного резистора, наносят на шкалу самодельного прибора отметки 5, 10 и 15 б, а между ними - по четыре деления. По этой же шкале измеряют и напряжения до 150 в, умножая показания прибора на 10, и напряжения до 600 в, умножая на 40 показания прибора.
Шкала измерений тока до 15 ма должна точно соответствовать шкале вольтметра постоянных напряжений, что проверяют по эталонному миллиамперметру (рис. 24,6). Если показания авометра отличаются от показаний контрольного прибора, то изменяя длину провода на резисторах R5-R7, подгоняют сопротивления универсального шунта.

Точно так же градуируют шкалу вольтметра переменных напряжений.

Для градуировки шкалы омметра надо использовать магазин сопротивлений или использовать в качестве эталонных постоянные резисторы с допуском ±5%. Прежде чем начать градуировку, резистором R11 авометра устанавливают стрелку прибора в крайнее правое положение - против цифры 15 шкалы постоянных токов и напряжений. Это будет «0» омметра.

Диапазон сопротивлений, измеряемых авометром, большой - от 10 ом до 2 Мом, шкала получается плотной, поэтому на шкалу наносят только цифры сопротивлений 1 ком, 5 ком, 100 ком, 500 ком и 2 Мом.

Авометром можно измерять статический коэффициент усиления транзисторов по току Вст до 200. Шкала этих измерений равномерная, поэтому Делят ее на равные промежутки заранее и проверяют по транзисторам с известными значениями Вст Если показания прибора несколько отличаются от фактических значений, то изменяют сопротивление резистора R14 до действительных значений этих параметров транзисторов.

Рис. 23. Шкала авометра.

Рис. 24. Схемы градуировки шкал вольтметра и миллиамперметра авометра.

Для проверки выносного пробника при измерении высокочастотного напряжения нужны вольтметры ВКС-7Б и любой высокочастотный генератор, параллельно которому подключают пробник. Провода от пробника включают в гнездо «Общий» и «+15 в» авометра. Высокую частоту подают на вход лампового вольтметра через переменный резистор, как при градуировке шкалы постоянных напряжений. Показания лампового волтьметра должны соответствовать шкале постоянного напряжения на 15 в авометра.

Если показания при проверке прибора по ламповому вольтметру не совпадают, то несколько изменяют сопротивление резистора R13 пробника.

С помощью пробника измеряют напряжения высокой частоты только до 50 в. При большем напряжении может произойти пробой диода. При измерении напряжений частот выше 100-140 Мгц прибор вносит значительные погрешности измерений ввиду шунтирующего действия диода.

Все градуировочные отметки на шкале омметра делают мягким карандашом и только после проверки точности измерений обводят их тушью.

В.В. Вознюк. В помощь школьному радиокружку

Ключевые теги: измерения, Вознюк

Этот прибор, измеритель ESR-RLCF , собирал в количестве четырех штук, работают все замечательно и ежедневно. Он обладает большой точностью измерения, имеется программная коррекция нуля, простой в налаживании. До этого собирал много разных приборов на микроконтроллерах, но всем им к этому очень далеко. Уделить надо только должное внимание катушке индуктивности. Она должна быть большой и намотана как можно толстым проводом.

Схема универсального измерительного прибора

Возможности измерителя

  • ESR электролитических конденсаторов - 0-50 Ом
  • Ёмкость электролитических конденсаторов - 0.33-60 000мкФ
  • Ёмкость неэлектролитических конденсаторов - 1 пФ - 1 мкФ
  • Индуктивность - 0.1 мкГн - 1 Гн
  • Частоту - до 50 МГц
  • Напряжение питания прибора - батарея 7-9 В
  • Ток потребления - 15-25 мА

В режиме ESR им можно измерять постоянные сопротивления 0.001 - 100 Ом, измерение сопротивления цепей, имеющих индуктивность или ёмкость, невозможно, так как измерение производится в импульсном режиме и измеряемое сопротивление шунтируется. Для корректного измерения таких сопротивлений необходимо нажать кнопку «+» при этом измерение производится при постоянном токе 10мА. В этом режиме диапазон измеряемых сопротивлений равен 0.001 - 20 Ом.

В режиме частотомера при нажатой кнопке «Lx/Cx_Px» включается функция «счетчик импульсов» (непрерывный счёт импульсов поступающих на вход “Fx“). Обнуление счетчика производится кнопкой «+». Есть индикация разряда батареи. Автоматическое отключение - около 4х минут. По истечении времени простоя ~ 4 мин, загорается надпись "StBy" и в течении 10 сек, можно нажать кнопку "+" и продолжится работа в том же режиме.



Как пользоваться прибором

  • Включение/ выключение - кратковременное нажатие кнопок “on/off”.
  • Переключение режимов - “ESR/C_R” - “Lx/Cx” - “Fx/Px” - кнопкой “SET”.
  • После включения прибор переходит в режим измерения ESR/C. В этом режиме производится одновременное измерение ESR и ёмкости электролитических конденсаторов или постоянных сопротивлений 0 - 100 Ом. При нажатой кнопке «+», измерение сопротивлений 0.001 - 20 Ом, измерение производится при постоянном токе 10 мА.
  • Установка нуля необходима, каждый раз при замене щупов или при измерении с помощью адаптера. Установка нуля производится автоматически, по нажатию соответствующих кнопок. Для этого замыкаем щупы, нажимаем и удерживаем кнопку “-”. На дисплее появится значение АЦП без обработки. Если значения на дисплее отличаются более +/-1, нажать кнопку “SET”, и запишется правильное значение “EE>xxx
  • Для режима измерения постоянных сопротивлений, также необходима установка нуля. Для этого замыкаем щупы, нажимаем и удерживаем кнопки “+” и “-”. Если значения на дисплее отличаются более +/-1, нажать кнопку “SET”, и запишется правильное значение “EE>xxx

Конструкция щупа

В качестве щупа, использован металлический штекер типа «тюльпан». К центральному выводу припаяна игла. Боковой уплотнитель - чехол от одноразового шприца. Из доступного материала для изготовления иглы можно использовать латунный стержень диаметром 3 мм. Через некоторое время, игла окисляется и для восстановления надёжного контакта, достаточно протереть кончик, мелкой наждачной бумагой.

Детали прибора

  • ЖК индикатор на основе контроллера HD44780, 2 строки по 16 знаков или 2 строки по 8 знаков.
  • Транзистор PMBS3904 - любой N-P-N, близкий по параметрам.
  • Транзисторы BC807 - любые P-N-P, близкие по параметрам.
  • Полевой транзистор P45N02 - подходит практически любой из материнской платы компьютера.
  • Резисторы в цепях стабилизаторов тока и DA1 - R1, R3, R6, R7, R13, R14, R15, должны быть такими, как указано на схеме, остальные можно близкими по номиналу.
  • Резисторы R22, R23, в большинстве случаев не нужны, при этом вывод «3» индикатора следует подключить к корпусу - это будет соответствовать максимальной контрастности индикатора.
  • Контур L101 - должен быть обязательно подстраиваемый, индуктивность 100 мкГн при среднем положении сердечника.
  • С101 - 430-650 пФ с низким ТКЕ, К31-11-2-Г - можно найти в КОС отечественных телевизоров 4-5 поколения (КВП контура).
  • С102, С104 4-10 мкФ SMD - можно найти в любой старой компьютерной материнской плате.
  • Пентиум-3 возле процессора, а также в боксовом процессоре Пентиум-2.
  • Микросхема DD101 - 74HC132, 74HCT132, 74AC132 - они также применяются в некоторых материнских платах.

Обсудить статью УНИВЕРСАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРИБОР