Транзисторы с большим коэффициентом усиления. Особенности работы и схема транзистора дарлингтона. Особенности работы устройства

В интегральных схемах и дискретной электронике большое распространение получили два вида составных транзисторов: по схеме Дарлингтона и Шиклаи. В микромощных схемах, например, входные каскады операционных усилителей, составные транзисторы обеспечивают большое входное сопротивление и малые входные токи. В устройствах, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) для повышения КПД необходимо обеспечить высокий коэффициент усиления по току мощных транзисторов.

Схема Шиклаи реализует мощный p-n-p транзистор с большим коэффициентом усиления с помощью маломощного p-n-p транзистора с малым В и мощного n-p-n транзистора (рисунок 7.51 ). В интегральных схемах это включение реализует высокобетный p-n-p транзистор на основе горизонтальных p-n-p транзистора и вертикального n-p-n транзистора. Также эта схема применяется в мощных двухтактных выходных каскадах, когда используются выходные транзисторы одной полярности (n-p-n ).


Рисунок 7.51 - Составной p-n-p транзистор Рисунок 7.52 - Составной n-p-n по схеме Шиклаи транзистор по схеме Дарлингтона

Схема Шиклаи или комплементарный транзистор Дарлингтона ведет себя, как транзистор p-n-p типа (рисунок 7.51 ) с большим коэффициентом усиления по току,

Входное напряжение идентично одиночному транзистору. Напряжение насыщения выше, чем у одиночного транзистора на величину падения напряжения на эмиттерном переходе n-p-n транзистора. Для кремниевых транзисторов это напряжение составляет порядка одного вольта в отличие от долей вольта одиночного транзистора. Между базой и эмиттером n-p-n транзистора (VT2) рекомендуется включать резистор с небольшим сопротивлением для подавления неуправляемого тока и повышения термоустойчивости.

Транзистор Дарлингтона реализуется на однополярных транзисторах (рисунок 7.52 ). Коэффициент усиления по току определяется произведением коэффициентов составляющих транзисторов.

Входное напряжение транзистора по схеме Дарлингтона в два раза больше, чем у одиночного транзистора. Напряжение насыщения превышает выходного транзистора. Входное сопротивление операционного усилителя при

.

Схема Дарлингтона используется в дискретных монолитных импульсных транзисторах. На одном кристалле формируются два транзистора, два шунтирующих резистора и защитный диод (рисунок 7.53 ). Резисторы R 1 и R 2 подавляют коэффициент усиления в режиме малых токов, (рисунок 7.38 ), что обеспечивает малое значение неуправляемого тока и повышение рабочего напряжения закрытого транзистора,


Рисунок 7.53 - Электрическая схема монолитного импульсного транзистора Дарлингтона

Резистор R2 (порядка 100 Ом) формируется в виде технологического шунта, подобно шунтам катодного перехода тиристоров. С этой целью при формировании - эмиттера с помощью фотолитографии в определенных локальных областях оставляют окисную маску в виде круга. Эти локальные маски не позволяют диффундировать донорной примеси, и под ними остаются p- столбики (рисунок 7.54 ). После металлизации по всей площади эмиттера эти столбики представляют собой распределенное сопротивление R2 и защитный диод D (рисунок 7.53 ). Защитный диод предохраняет от пробоя эмиттерные переходы при переполюсовке коллекторного напряжения. Входная мощность потребления транзистора по схеме Дарлингтона на полтора два порядка ниже, чем у одиночного транзистора. Максимальная частота переключений зависит от предельного напряжения и тока коллектора. Транзисторы на токи успешно работают в импульсных преобразователях до частот порядка 100 кГц. Отличительной особенностью монолитного транзистора Дарлингтона является квадратичная передаточная характеристика, так как В- амперная характеристика линейно возрастает с ростом тока коллектора до максимального значения,


При проектировании радиоэлектронных схем часто бывают ситуации, когда желательно иметь транзисторы с параметрами лучше тех, которые предлагают производители радиоэлементов. В некоторых случаях нам может потребоваться больший коэффициент усиления по току h 21 , в других большее значение входного сопротивления h 11 , а в третьих более низкое значение выходной проводимости h 22 . Для решения перечисленных проблем отлично подходит вариант использования электронного компонента о котором мы поговорим ниже.

Устройство составного транзистора и обозначение на схемах

Приведенная чуть ниже схема эквивалентна одиночному n-p-n полупроводнику. В данной схеме ток эмиттера VT1 является током базы VT2. Коллекторный ток составного транзистора определяется в основном током VT2.

Это два отдельных биполярных транзистора на выполненные на одном кристалле и в одном корпусе. Там же и размещается нагрузочный резистор в цепи эмиттера первого биполярного транзистора. У транзистора Дарлингтона те же выводы, что и у стандартного биполярного транзистора – база, коллектор и эмиттер.

Как видим из рисунка выше, стандартный составной транзистор это комбинация из нескольких транзисторов. В зависимости от уровня сложности и рассеиваемой мощности в составе транзистора Дарлингтона может быть и более двух.

Основное плюсом составного транзистора является значительно больший коэффициент усиления по току h 21 , который можно приблизительно вычислить по формуле как произведение параметров h 21 входящих в схему транзисторов.

h 21 =h 21vt1 × h21vt2 (1)

Так если коэффициент усиления первого равен 120, а второго 60 то общий коэффициент усиления схемы Дарлингтона равен произведению этих величин - 7200.

Но учитывайте, что параметр h21 достаточно сильно зависит от коллекторного тока. В случае когда базовый ток транзистора VT2 достаточно низок, коллекторного VT1 может не хватить для обеспечения нужного значения коэффициента усиления по току h 21 . Тогда увеличением h21 и, соответственно, снижением тока базы составного транзистора можно добиться роста тока коллектора VT1. Для этого между эмиттером и базой VT2 включают дополнительное сопротивление, как показано на схеме ниже.

Вычислим элементы для схемы Дарлингтона, собранной, например на биполярных транзисторах BC846A, ток VT2 равен 1 мА. Тогда его ток базы определим из выражения:

i kvt1 =i бvt2 =i kvt2 / h 21vt2 = 1×10 -3 A / 200 =5×10 -6 A

При таком малом токе в 5 мкА коэффициент h 21 резко снижается и общий коэффициент может оказаться на порядок меньше расчетного. Увеличив ток коллектора первого транзистора при помощи добавочного резистора можно значительно выиграть в значении общего параметра h 21 . Так как напряжение на базе является константой (для типового кремниевого трех выводного полупроводника u бэ = 0,7 В), то сопротивление можно рассчитать по :

R = u бэvt2 / i эvt1 - i бvt2 = 0.7 Вольта / 0.1 mA - 0.005mA = 7кОм

При этом мы можем рассчитывать на коэффициент усиления по току до 40000. Именно по такой схеме построены многие супербетта транзисторы.

Добавив дегтя упомяну, что данная схема Дарлингтона обладает таким существенным недочетом, как повышенное напряжение U кэ. Если в обычных транзисторах напряжение составляет 0,2 В, то в составном транзисторе оно возрастает до уровня 0,9 В. Это связано с необходимостью открывать VT1, а для этого на его базу необходимо подать напряжение уровнем до 0,7 В (если при изготовлении полупроводника использовался кремний).

В результате чтоб исключить упомянутый недостаток, в классическую схему внесли незначительные изменения и получили комплементарный транзистор Дарлингтона. Такой составной транзистор составлен из биполярных приборов, но уже разной проводимости: p-n-p и n-p-n.

Российские, да и многие зарубежные радиолюбители такое соединение называют схемой Шиклаи, хотя эта схема называлась парадоксной парой.

Типичными минусом составных транзисторов, ограничивающими их применение является невысокое быстродействие, поэтому они нашли широкое использование только в низкочастотных схемах. Они прекрасно работают в выходных каскадах мощных УНЧ, в схемах управления двигателями и устройствами автоматики, в схемах зажигания автомобилей.

На принципиальных схемах составной транзистор обозначается как обычный биполярный. Хотя, редко, но используется такое условно графическое изображение составного транзистора на схеме.

Одной из самых распространенных считается интегральная сборка L293D - это четыре токовых усилителя в одном корпусе. Кроме того микросборку L293 можно определить как четыре транзисторных электронных ключа.

Выходной каскад микросхемы состоит из комбинации схем Дарлингтона и Шиклаи.

Кроме того уважение у радиолюбителей получили и специализированные микросборки на основе схемы Дарлингтона. Например . Эта интегральная схема по своей сути является матрицей из семи транзисторов Дарлингтона. Такие универсальные сборки отлично украшают радиолюбительские схемы и делают их более функциональными.

Микросхема является семи канальным коммутатор мощных нагрузок на базе составных транзисторов Дарлингтона с открытым коллектором. Коммутаторы содержат защитные диоды, что позволяет коммутировать индуктивные нагрузки, например обмотку реле. Коммутатор ULN2004 необходим при сопряжения мощных нагрузок с микросхемами КМОП-логики.

Зарядный ток через батарею в зависимости от напряжения на ней (прикладываемого к Б-Э переходу VT1), регулируется транзистором VT1, коллекторным напряжением которого управляется индикатор заряда на светодиоде (по мере зарядки ток заряда уменьшается и светодиод постепенно гаснет) и мощный составной транзистор, содержащий VT2, VT3, VT4.


Сигнал требующий усиления через предварительный УНЧ подается на предварительный дифферециальный усилительный каскад построенный на составных VT1 и VT2. Использование дифференциальной схемы в усилительном каскаде, снижает шумовые эффекты и обеспечивает работу отрицательной обратной связи. Напряжение ОС поступает на базу транзистора VT2 с выхода усилителя мощности. ОС по постоянному току реализуется через резистор R6.

В момент включения генератора конденсатор С1 начинает заряжаться, затем открывается стабилитрон и сработает реле К1. Конденсатор начинает разряжаться через резистор и составной транзистор. Через небольшой промежуток времени реле выключается и начинается новый цикл работы генератора.

Если соединить транзисторы, как показано на рис. 2.60, то полученная схема будет работать как один транзистор, причем его коэффициент β будет равен произведению коэффициентов β составляющих транзисторов. Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс.


Рис. 2.60. Составной транзистор Дарлингтона.


В транзисторе Дарлингтона падение напряжения между базой и эмиттером в два раза больше обычного, а напряжение насыщения равно по крайней мере падению напряжения на диоде (так как потенциал эмиттера транзистора Т 1 должен превышать потенциал эмиттера транзистора Т 2 , на величину падения напряжения на диоде). Кроме того, соединенные таким образом транзисторы ведут себя как один транзистор с достаточно малым быстродействием, так как транзистор T 1 не может быстро выключить транзистор Т 2 . С учетом этого свойства обычно между базой и эмиттером транзистора Т 2 включают резистор (рис. 2.61). Резистор R предотвращает смешение транзистора Т 2 в область проводимости за счет токов утечки транзисторов Т 1 и Т 2 . Сопротивление резистора выбирают так, чтобы токи утечки (измеряемые в наноамперах для малосигнальных транзисторов и в сотнях микроампер для мощных транзисторов) создавали на нем падение напряжения, не превышающее падения напряжения на диоде, и вместе с тем чтобы через него протекал ток. малый по сравнению с базовым током транзистора Т 2 . Обычно сопротивление R составляет несколько сотен ом в мощном транзисторе Дарлингтона и несколько тысяч ом в малосигнальном транзисторе Дарлингтона.


Рис. 2.61. Повышение скорости выключения в составном транзисторе Дарлингтона.


Промышленность выпускает транзисторы Дарлингтона в виде законченных модулей, включающих, как правило, и эмиттерный резистор. Примером такой стандартной схемы служит мощный n-p-n - транзистор Дарлингтона типа 2N6282, его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.


Соединение транзисторов по схеме Шиклаи (Sziklai). Соединение транзисторов по схеме Шиклаи представляет собой схему, подобную той. которую мы только что рассмотрели. Она также обеспечивает увеличение коэффициента β. Иногда такое соединение называют комплементарным транзистором Дарлингтона (рис. 2.62). Схема ведет себя как транзистор n-p-n - типа, обладающий большим коэффициентом β. В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения, как и в предыдущей схеме, равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора Т 2 рекомендуется включать резистор с небольшим сопротивлением. Разработчики применяют эту схему в мощных двухтактных выходных каскадах, когда хотят использовать выходные транзисторы только одной полярности. Пример такой схемы показан на рис. 2.63. Как и прежде, резистор представляет собой коллекторный резистор транзистора T 1 Транзистор Дарлингтона, образованный транзисторами Т 2 и Т 3 . ведет себя как один транзистор n-p-n - типа. с большим коэффициентом усиления по току. Транзисторы Т 4 и Т 5 , соединенные по схеме Шиклаи, ведут себя как мощный транзистор p-n-p - типа. с большим коэффициентом усиления. Как и прежде, резисторы R 3 и R 4 имеют небольшое сопротивление. Эту схему иногда называют двухтактным повторителем с квазидополнительной симметрией. В настоящем каскаде с дополнительной симметрией (комплементарном) транзисторы Т 4 и Т 5 , были бы соединены по схеме Дарлингтона.


Рис. 2.62. Соединение транзисторов по схеме Шиклаи («дополняющий транзистор Дарлингтона»).


Рис. 2.63. Мощный двухтактный каскад, в котором использованы выходные транзисторы только n-p-n - типа.


Транзистор со сверхбольшим значением коэффициента усиления по току. Составные транзисторы - транзистор Дарлингтона и ему подобные - не следует путать с транзисторами со сверхбольшим значением коэффициента усиления по току, в которых очень большое значение коэффициента h 21э получают в ходе технологического процесса изготовления элемента. Примером такого элемента служит транзистор типа 2N5962. для которого гарантируется минимальный коэффициент усиления по току, равный 450, при изменении коллекторного тока в диапазоне от 10 мкА до 10 мА; этот транзистор принадлежит к серии элементов 2N5961-2N5963, которая характеризуется диапазоном максимальных напряжений U кэ от 30 до 60 В (если коллекторное напряжение должно быть больше, то следует пойти на уменьшение значения C). Промышленность выпускает согласованные пары транзисторов со сверхбольшим значением коэффициента β. Их используют в усилителях с низким уровнем сигнала, для которых транзисторы должны иметь согласованные характеристики; этому вопросу посвящен разд. 2.18 . Примерами подобных стандартных схем служат схемы типа LM394 и МАТ-01; они представляют собой транзисторные пары с большим коэффициентом усиления, в которых напряжение U бэ согласовано до долей милливольта (в самых хороших схемах обеспечивается согласование до 50 мкВ), а коэффициент h 21э - до 1%. Схема типа МАТ-03 представляет собой согласованную пару p-n-p - транзисторов.


Транзисторы со сверхбольшим значением коэффициента β можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316.



Усилитель, называется именно так, не по причине, что его автор ДАРЛИНГТОН, а потому, что выходной каскад усилителя мощности построен на дарлингтоновских (составных) транзисторах.

Для справки : два транзистора одинаковой структуры соединены специальным образом для высокого усиления. Такое соединение транзисторов образует составной транзистор, или транзистор Дарлингтона - по имени изобретателя этого схемного решения. Такой транзистор используется в схемах работающих с большими токами (например, в схемах стабилизаторов напряжения, выходных каскадов усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс. Составной транзистор имеет три вывода (база, эмиттер и коллектор), которые эквивалентны выводам обычного одиночного транзистора. Коэффициент усиления по току типичного составного транзистора, у мощных транзисторов ≈1000 и у маломощных транзисторов ≈50000.

Достоинства транзистора Дарлингтона

Высокий коэффициент усиления по току.

Cхема Дарлингтона изготавливается в виде интегральных схем и при одинаковом токе рабочая поверхность кремния меньше, чем у биполярных транзисторов. Данные схемы представляют большой интерес при высоких напряжениях.

Недостатки составного транзистора

Низкое быстродействие, особенно перехода из открытого состояния в закрытое. По этой причине составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, на высоких частотах их параметры хуже, чем у одиночного транзистора.

Прямое падение напряжения на переходе база-эмиттер в схеме Дарлингтона почти в два раза больше чем в обычном транзисторе, и составляет для кремниевых транзисторов около 1,2 - 1,4 В.

Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В для маломощных транзисторов и около 2 В для транзисторов большой мощности.

Принципиальная схема УНЧ

Усилитель можно назвать самым дешевым вариантом самостоятельного построения сабвуферного усилителя. Самое ценное в схеме - выходные транзисторы, цена которых не превышает 1$. По идее, такой усилитель усилитель можно собрать за 3-5$ без блока питания. Давайте сделаем небольшое сравнение, какой из микросхем может дать мощность 100-200 ватт на нагрузку 4 Ом? Сразу в мыслях знаменитые . Но если сравнить цены, то дарлингтоновская схема и дешевле и мощнее TDA7294!

Сама микросхема, без комплектующих компонентов стоит 3$ как минимум, а цена активных компонентов дарлингтоновской схемы не более 2-2,5$! Притом, что дарлингтоновская схема на 50-70 ватт мощнее TDA7294!

При нагрузке 4 Ом усилитель отдает 150 ватт, это самый дешевый и неплохой вариант сабвуферного усилителя. В схеме усилителя использованы недорогие выпрямительные диоды, которые можно достать в любом электронном устройстве.

Усилитель может обеспечивать такую мощность за счет того, что на выходе использованы именно составные транзисторы, но при желании они могут быть заменены на обычные. Удобно использовать комплементарную пару КТ827/25, но конечно мощность усилителя спадет до 50-70 ватт. В дифференциальном каскаде можно использовать отечественные-КТ361 или КТ3107.

Полный аналог транзистора TIP41 наш КТ819А, Этот транзистор служит для усиления сигнала с диффкаскадов и раскачки выходников Эмиттерные резисторы можно использовать с мощностью 2-5 ватт, они для защиты выходного каскада. Подробнее про теххарактеристики транзистора TIP41C. Даташит для TIP41 и TIP42 .

Материал p-n-перехода: Si

Структура транзистора: NPN

Предельная постоянная рассеиваемая мощность коллектора (Pc) транзистора: 65 W

Предельное постоянное напряжение коллектор-база (Ucb): 140 V

Предельное постоянное напряжение коллектор-эмиттер (Uce) транзистора: 100 V

Предельное постоянное напряжение эмиттер-база (Ueb): 5 V

Предельный постоянный ток коллектора транзистора (Ic max): 6 A

Предельная температура p-n перехода (Tj): 150 C

Граничная частота коэффициента передачи тока (Ft) транзистора: 3 MHz

- Ёмкость коллекторного перехода (Cc): pF

Статический коэффициент передачи тока в схеме с общим эмиттером (Hfe), min: 20

Такой усилитель может быть использован как в качестве сабвуферного, так и для широкополосной акустики. Характеристики усилителя тоже неплохие. При нагрузке в 4 Ом выходная мощность усилителя порядка 150 ватт, при нагрузке в 8 Ом мощность 100 ватт, максимальная мощность усилителя может доходить до 200 ватт с питанием +/-50 вольт.

Обозначение составного транзистора, выполненного из двух отдельных транзисторов, соединенных по схеме Дарлингтона, указано на рисунке №1. Первый из упомянутых транзисторов включен по схеме эмиттерного повторителя, сигнал с эмиттера первого транзистора поступает на базу второго транзистора. Достоинством этой схемы является исключительно высокий коэффициент усиления. Общий коэффициент усиления по току р для этой схемы равен произведению коэффициентов усиления по току отдельных транзисторов: р = ргр2 .

Например, если входной транзистор пары Дарлингтона имеет коэффициент усиления, равный 120, а коэффициент усиления второго транзистора равен 50, то общее р составляет 6000. В действительности усиление будет даже несколько большим, так как общий коллекторный ток составного транзистора равен сумме коллекторных токов пары входящих в него транзисторов.
Полная схема составного транзистора показана на рисунке №2. В этой схеме резисторы R 1 и R 2 составляют делитель напряжения, создающий смещение на базе первого транзистора. Резистор Rн, подключенный к эмиттеру составного транзистора, образует выходную цепь. Такой прибор широко применяется на практике, особенно в тех случаях, когда требуется большой коэффициент усиления по току. Схема имеет высокую чувствительность к входному сигналу и отличается высоким уровнем выходного коллекторного тока, что позволяет использовать этот ток в качестве управляющего (особенно при низком напряжении питания). Применение схемы Дарлингтона способствует уменьшению числа компонентов в схемах.

Схему Дарлингтона используют в усилителях низкой частоты, в генераторах и переключающих устройствах. Выходное сопротивление схемы Дарлингтона во много раз ниже входного. В этом смысле ее характеристики подобны характеристикам понижающего трансформатора. Однако в отличие от транформатора схема Дарлингтона позволяет получить большое усиление по мощности. Входное сопротивление схемы примерно равно $²Rn, а ее выходное сопротивление обычно меньше Rн. В переключающих устройствах схема Дарлингтона применяется в области частот до 25 кГц.

Литература: Матью Мэндл. 200 ИЗБРАННЫХ СХЕМ ЭЛЕКТРОНИКИ. Редакция литературы по информатике и электронике. © 1978 Prentice-Hall, Inc. © перевод на русский язык, «Мир», 1985, 1980

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 08.10.2014

    Стереофонический регулятор громкости, баланса и тембра на ТСА5550 имеет следующие параметры: Малые нелинейные искажения не более 0,1% Напряжение питания 10-16В (12В номинальное) Ток потребления 15…30мА Входное напряжение 0,5В (коэффициент усиления при напряжении питания 12В единица) Диапазон регулировки тембра -14…+14дБ Диапазон регулировки баланса 3дБ Разница между каналами 45дБ Отношение сигнал шум …