Высокочастотное оборудование связи.  Виртуальный компьютерный музей. Фильтр присоединения MCD80

Страница 16 из 21

Конструкция линии электропередачи, определяемая ее главным назначением - передачей электрической энергии на расстояние, позволяет использовать ее для передачи информации. Высокий уровень эксплуатации и большая механическая прочность линий обеспечивают надежность каналов связи, близкую к надежности каналов по кабельным линиям связи. Вместе с тем при осуществлении по ВЛ каналов связи для передачи информации приходится учитывать особенности линий, затрудняющие их использование для целей связи. Такой особенностью является, например, наличие на концах линий оборудования подстанций, которое можно представить как цепь изменяющихся в широких пределах последовательно соединенных реактивного и активного сопротивления. Этими сопротивлениями через шины подстанций образуется связь между ВЛ, что приводит к увеличению тракта связи. Поэтому для снижения влияния между каналами и затухания с помощью специальных заградителей преграждают пути токам высокой частоты в сторону подстанций.
Значительно увеличивают затухание также ответвления от ВЛ. Эти и другие особенности линий требуют осуществления ряда мероприятий по созданию условий передачи информации.
Устройство ВЧ каналов по распределительным сетям 6-10 кВ сопряжено со значительными -трудностями из-за специфики построения сетей этих напряжений. На участках магистральных линий 6-10 к В между соседними коммутационными пунктами имеется большое число отпаек, линии секционируются разъединителями и выключателями, схемы первичной коммутации сетей нередко меняются, в том числе автоматически, из-за большей повреждаемости линий этих напряжений их надежность ниже, чем В71 35 кВ и выше. Передача сигналов в распределительных сетях зависит от многих факторов, влияющих на затухание сигнала: от длины и числа отпаек, материала проводов линии, нагрузки и др. Нагрузка может изменяться в широких пределах. При этом отключение отдельных отпаек, Как показывают исследования, иногда не только не уменьшает затухания, но, наоборот, из-за нарушения взаимной компенсации затуханий между соседними отпайками увеличивает ее. Поэтому каналы даже небольшой протяженности имеют значительное затухание и работают нестабильно. На работе каналов отрицательно сказываются также повреждения изоляторов, некачественное соединение проводов и неудовлетворительное состояние контактов коммутационной аппаратуры, Эти дефекты являются источниками помех, соизмеримых с уровнем передаваемого сигнала, что может вызывать прекращение работы канала и повреждение аппаратуры. Наличие на линиях секционирующих аппаратов приводит к полному прекращению работы ВЧ канала в случае их отключения и заземления одного из участков линии. Отмеченные недостатки существенно ограничивают, хотя и не исключают , использование линий 6-10 кВ для организации ВЧ каналов. И все-таки следует отметить, что широкого распространения ВЧ связь по распределительным сетям в настоящее время не получила.
По назначению ВЧ каналы связи по линиям электропередачи делятся на четыре группы: каналы диспетчерской связи, технологические, специальные и каналы линейно-эксплуатационной связи.
Не останавливаясь подробно на использовании и назначении каждой группы каналов, отметим, что для диспетчерских и технологические каналов телефонной связи используется в основном полоса тональных частот 300-3400 Гц <300-2300). Верхняя часть тонального спектра (2400-3400 Гц) не пользуется для передачи сигналов телеинформации. Современная комбинированная аппаратура позволяет организовать в этом спектре до четырех независимых узкополосных каналов телеииформации.
Каналы линейно-эксплуатационной связи служат для организации связи диспетчера с работающими на трассе протяженной линии электропередачи или подстанциях ремонтными бригадами, когда постоянной связи с ними нет. Для этих каналов применяется упрощенная перевозная и переносная телефонная аппаратура.
По степени сложности ВЧ каналы делятся на простые и сложные. Каналы, состоящие только из двух комплектов оконечной ВЧ аппаратуры, называют простыми. Сложные каналы имеют в своем составе промежуточные усилители или несколько комплектов оконечной аппаратуры (на одинаковых частотах).

Оборудование высокочастотных каналов связи по ВЛ.

Присоединение аппаратуры связи к проводам линии электропередачи осуществляется с помощью специальных устройств так называемой аппаратуры присоединения и обработки линии, состоящей из конденсатора связи, заградителя и элементов защиты.

Рис. 21. Схема высокочастотного канала связи по ВЛ
На рис. 21 изображена схема образования канала связи по ВЛ. Передача сигналов токами высокой частоты Осуществляется передатчиками аппаратуры уплотнения J, размещенными на обоих концах ВЛ на подстанциях А и В.
Здесь же в составе аппаратуры уплотнения 1 имеются приемники, осуществляющие прием модулированных токов ВЧ и их преобразование. Для обеспечения передачи энергии сигнала токами ВЧ по проводам достаточно обработать на каждом конце линии один провод с помощью заградителя 5, конденсатора связи 4 и фильтра присоединения 3, который соединяется с аппаратурой уплотнения 1 при помощи ВЧ кабеля 2. Для обеспечения безопасности работы персонала на фильтре присоединения при работающем ВЧ канале служит заземляющий нож 6.
Присоединение высокочастотной аппаратуры по схеме рис. 21 носит название фаза-земля. Такая схема может использоваться для образования одноканальных и многоканальных систем передачи информации. Применяются также другие схемы присоединения.
При необходимости подключения к линии электропередачи аппаратуры, установленной на трассе линии (телефонная передвижная аппаратура ремонтных бригад, аппаратура дистанционно управляемой УКВ радиостанции и т. п.), используются, как правило, антенные устройства присоединения. В качестве антенны применяются отрезки изолированного провода определенной длины или участки грозозащитного троса.
Высокочастотный (линейный) заградитель обладает высоким сопротивлением для рабочей частоты канала и служит для заграждения пути этим токам, уменьшая их утечку в сторону подстанции. При отсутствии заградителя затухание канала может увеличиться, так как небольшое входное сопротивление подстанции шунтирует ВЧ канал. Заградитель состоит из силовой катушки (реактора), элемента настройки и устройства защиты. Силовая катушка является основным элементом заградителя. Она должна выдерживать максимальные рабочие токи линии и токи КЗ. Силовая катушка изготовляется из свитых в спираль медных или алюминиевых проводов соответствующего сечения, намотанных на рейки из древесно-слоистого пластика (дельта-древесина) или стеклотекстолита. Концы реек закрепляются на металлических крестовинах. На верхней крестовине крепится элемент настройки с защитными разрядниками. Элемент настройки служит для получения относительно высокого сопротивления заградителя на одной или нескольких частотах или полосах частот.
Элемент настройки состоит из конденсаторов, катушек индуктивности и резисторов и включается параллельно
силовой катушке. Силовая катушка и элемент настройки заградителя подвергаются воздействиям при атмосферных и коммутационных перенапряжениях и КЗ. Роль защиты от перенапряжений, как правило, выполняет вентильный разрядник, состоящий из искрового промежутка и нелинейного вилитового резистора.
В электрических сетях 6-220 кВ нашли применение заградители ВЗ-600-0,25 и КЗ-500, а также заградители со стальным сердечником типов ВЧЗС-100 и ВЧЗС-100В, отличающиеся друг от друга номинальным током и индуктивностью, устойчивостью и геометрическими параметрами силовой катушки, а также типом элемента настройки и его защиты.
Заградители врезаются в фазный провод линии электропередачи между линейным разъединителем и конденсатором связи. Высокочастотные заградители могут монтироваться в подвесном виде, на опорных конструкциях, в том числе и на конденсаторах связи.
Конденсаторы связи служат для подключения ВЧ аппаратуры к воздушной линии, при этом токи утечки промышленной частоты отводятся через конденсатор связи на землю, минуя аппаратуру высокой частоты. Конденсаторы связи рассчитаны на фазное напряжение (в сети с заземленной нейтралью) и на линейное напряжение (в сети с изолированной нейтралью). В нашей стране выпускаются конденсаторы связи двух типов: СМР (связи, маслонаполненный, с расширителем) и СММ (связи, маслонаполненный, в металлическом корпусе). Для различных напряжений конденсаторы комплектуют из отдельных элементов, соединенных последовательно. Конденсаторы связи могут устанавливаться на железобетонные или металлические опоры высотой около 3 м. Для изоляции нижнего элемента конденсатора типа СМР от тела опоры используют специальные фарфоровые подставки круглого сечения.

Фильтр присоединения служит связующим звеном между конденсатором связи и ВЧ аппаратурой, разделяя линию высокого напряжения и установку слабого тока, каковой является аппаратура уплотнения. Фильтр присоединения обеспечивает тем самым безопасность персонала и защиту аппаратуры от высокого напряжения, так как при заземлении нижней обкладки конденсатора связи образуется путь для токов утечки промышленной частоты. С помощью фильтра присоединения осуществляется согласование волновых сопротивлений линии и высокочастотного кабеля, а также компенсации реактивного сопротивления конденсатора связи в заданной полосе частот. Фильтры присоединения выполняются по трансформаторной и автотрансформаторной схемам и вместе с конденсаторами связи образуют полосовые фильтры.
Наибольшее распространение в организации ВЧ каналов связи по линиям электропередачи предприятия получил фильтр присоединения типа ОФП-4 (см. рис. 19). Фильтр заключен в стальном сварном корпусе с проходным изолятором для присоединения конденсатора связи и кабельной воронкой для ввода ВЧ кабеля. На стенке корпуса крепится разрядник, имеющий удлиненную шпильку для подключения шинки заземления и предназначенный для защиты элементов фильтра присоединения от перенапряжений. Фильтр рассчитан для присоединения ВЧ аппаратуры по схеме фаза-земля в комплекте с конденсаторами связи емкостью 1100 и 2200 пФ. Фильтр устанавливается, как правило, на опоре конденсатора связи и крепится к опоре болтами на высоте 1,6-1,8 м от уровня земли.
Как отмечалось, все переключения в цепях фильтра присоединения производятся при включенном заземляющем ноже, который служит для заземления нижней обкладки конденсатора связи при работе персонала. В качестве заземляющего ножа применяется однополюсный разъединитель для напряжения 6-10 кВ. Операции с заземляющим ножом производятся с помощью изолирующей штанги. Некоторые типы фильтров присоединения имеют смонтированный внутри корпуса заземляющий нож. Для обеспечения безопасности в этом случае должен устанавливаться отдельно стоящий заземляющий нож.
Высокочастотный кабель служит для электрического соединения фильтра присоединения (см. рис. 21) с приемопередающей аппаратурой. При подключении аппаратуры к линии по схеме фаза - земля применяются коаксиальные кабели. Наиболее распространенным является высокочастотный коаксиальный кабель марки РК-75, внутренний проводник (одножильный или многожильный) которого отделен от внешней оплетки изоляцией из высокочастотного диэлектрика. Внешняя экранная оплетка служит обратным проводом. Внешний проводник заключен в защитную изолирующую оболочку.
Высокочастотные характеристики кабеля РК-75, как и обычных кабелей связи, определяются теми же параметрами: волновым сопротивлением, километрическим затуханием и скоростью распространения электромагнитных волн.
Надежную работу ВЧ каналов по ВЛ обеспечивают качественное и регулярное выполнение планово-профилактических работ, предусматривающих целый комплекс работ на оборудовании ВЧ каналов связи по ВЛ. Для выполнения профилактических измерений каналы выводятся из работы. В состав профилактического обслуживания входят плановые проверки аппаратуры и каналов, периодичность которых определяется состоянием аппаратуры, качеством эксплуатационного обслуживания с учетом профилактических работ и устанавливается не реже 1 раза в 3 года. Внеплановые проверки каналов выполняются при изменении ВЧ тракта, повреждений оборудования и при ненадежной работе канала из-за нарушения регламентированных параметров.

Аппаратура высокочастотной связи с цифровой обработкой сигналов (АВЦ) разработана фирмой “РАДИС Лтд”, г. Зеленоград (Москва) в соответствии с техническим заданием, утвержденным ЦДУ ЕЭС России*. АВЦ принята и рекомендована к производству межведомственной комиссией ОАО “ФСК ЕЭС” в июле 2003г, имеет сертификат Госстандарта России. Аппаратура производится фирмой “РАДИС Лтд” с 2004 г.
* В настоящее время ОАО “СО-ЦДУ ЕЭС”.

Назначение и возможности

АВЦ предназначена для организации 1, 2, 3 или 4-х каналов телефонной связи, телемеханической информации и передачи данных по ЛЭП 35-500 кВ между диспетчерским пунктом района или предприятия электрических сетей и подстанциями либо любыми объектами, необходимыми для диспетчерского и технологического управления в энергосистемах.

В каждом канале может быть организована телефонная связь с возможностью передачи в надтональном спектре телемеханической информации встроенными или внешними модемами либо передача данных с помощью встроенного или внешнего модема пользователя.

Модификации АВЦ

Совмещенный вариант

терминал АВЦ-С

Исполнение

В АВЦ широко используются методы и средства цифровой обработки сигналов, что позволяет обеспечить точность, стабильность, технологичность и высокую надежность аппаратуры. Входящие в состав АВЦ модулятор/демодулятор АМ ОБП, трансмультиплексор, адаптивные эквалайзеры, встроенные модемы телемеханики и служебные модемы сигналов управления выполнены с применением сигнальных процессоров, ПЛИС и микроконтроллеров, а телефонные автоматики и блок управления реализованы на базе микроконтроллеров. В качестве встроенного модема для передачи данных в канале используется модем STF/CF519C фирмы “Аналитик ”.

Технические характеристики

Число каналов 4, 3, 2 или 1
Диапазон рабочих частот 36-1000 кГц
Номинальная полоса частот одного направления передачи(приема):
- для одноканальной

4 кГц

- для двухканальной 8 кГц
- для трехканальной 12 кГц
16 кГц
Минимальный разнос частот между краями номинальных полос передачи и приема:
- для одно- и двухканальной 8 кГц
(в диапазоне до 500 кГц)
- для трехканальной 12 кГц
(в диапазоне до 500 кГц)
- для четырехканальной аппаратуры 16 кГц
(в диапазоне до 500 кГц)
- одно-, двух-, трех и четырехканальной аппаратуры 16 кГц
(в диапазоне
от 500 до 1000 кГц)
Максимальная пиковая мощность передатчика 40 Вт
Чувствительность приемника -25 дБм
Избирательность приемного тракта удовлетворяет требованиям МЭК 495
Диапазон регулировки АРУ в приемнике 40 дБ
Число встроенных модемов телемеханики (скорость 200, 600 бод) в каждом канале
- на скорость 200 Бод 2
- на скорость 600 Бод 1
Число подключаемых внешних модемов телемеханики в каждом канале Не более 2-х
Число встроенных модемов для передачи данных
(скорость до 24,4 кбит/c)
До 4-х
Число подключаемых внешних модемов для передачи данных До 4-х
Номинальное сопротивление для ВЧ-выхода
- неуравновешенного 75 Ом
- уравновешенного 150 Ом
Диапазон рабочих температур 0…+45°С
Питание 220 В,50 Гц

Примечание: при уравновешенном выходе средняя точка может соединяться с землей непосредственно или через резистор 75 Ом мощностью 10Вт.

Краткое описание

Терминал АВЦ-НЧ устанавливается на диспетчерском пункте, а АВЦ-ВЧ - на опорной или узловой подстанции. Связь между ними осуществляется по двум телефонным парам. Полосы частот, занимаемые каждым каналом связи:

Перекрываемое затухание между терминалами АВЦ-НЧ и АВЦ-ВЧ не более 20 дБ на максимальной частоте канала (характеристическое сопротивление линии связи 150 Ом).

Эффективная полоса пропускания каждого канала в АВЦ 0,3-3,4 кГц, причем она может быть использована:

Сигналы телемеханики передаются с помощью встроенных модемов (два на скорость 200 Бод, средние частоты 2,72 и 3,22 кГц или один на скорость 600 Бод, средняя частота 3 кГц) или внешних модемов пользователя.
Передача данных осуществляется с помощью встроенного модема STF/CF519C (в зависимости от параметров линии скорость может достигать 24,4 кбит/с) или внешнего модема пользователя. Это дает возможность организации до 4 каналов межмашинного обмена.
В тракте приема АВЦ-НЧ (АВЦ-С) предусмотрена полуавтоматическая коррекция частотной характеристики остаточного затухания каждого канала.
В каждом телефонном канале АВЦ имеется возможность включения компандера.


Ячейка телефонной автоматики

АВЦ-НЧ (АВЦ-С) содержит встроенные устройства автоматического соединения абонентов (телефонные автоматики), которые позволяют подключение:

Если канал используется для передачи данных, то ячейка телефонной автоматики заменяется ячейкой встроенных модемов STF/CF519C.


Ячейка модемов STF/CF519C

В АВЦ-НЧ и АВЦ-С имеется блок управления, который с помощью служебного модема каждого канала (скорость передачи 100 Бод, средняя частота 3,6 кГц) осуществляет передачу команд и непрерывный контроль наличия связи между местным и удаленным терминалами. При пропадании связи обеспечивается выдача звукового сигнала и замыкание контактов реле внешней сигнализации. В энергонезависимой памяти блока ведется журнал событий (включение/выключение и готовность аппаратуры, “пропадание” канала связи и т.п.) на 512 записей.

Необходимые режимы АВЦ устанавливаются при помощи выносного пульта управления или внешнего компьютера, подключаемого через интерфейс RS-232 к блоку управления. Пульт позволяет снять диаграмму уровней и характеристики остаточного затухания канала, выполнить необходимую коррекцию частотной характеристики и оценить уровень характеристических искажений встроенных модемов телемеханики.

Рабочая частота аппаратуры может быть перестроена пользователем в пределах одного из поддиапазонов: 36-125, 125-500 и 500-1000 кГц. Шаг перестройки - 1 кГц.

Схемы организации каналов связи

Помимо прямого канала связи (“точка-точка”) между полукомплектами АВЦ возможны более сложные схемы организации каналов связи (типа “звезда”). Так, двухканальный диспетчерский полукомплект позволяет организовать связь с двумя одноканальными полукомплектами, установленными в контролируемых пунктах, а четырехканальный - с двумя двухканальными или четырьмя одноканальными полукомплектами.

Возможны и другие подобные конфигурации каналов связи. C помощью дополнительного терминала АВЦ-ВЧ аппаратура обеспечивает организацию четырехпроводного переприема без отбора каналов.

Кроме того, могут быть предоставлены следующие возможности:

С помощью лишь терминала АВЦ-ВЧ организуется работа совместно с внешним модемом, имеющим полосу 4, 8, 12 или 16 кГц в диапазоне номинальных частот от 0 до 80 кГц, что позволяет создавать комплексы цифровой высокочастотной связи. Например, на базе терминала АВЦ-ВЧ и модемов М-АСП-ПГ-ЛЭП фирмы "Зелакс " можно организовать связь со скоростью передачи данных до 80 кбит/с в полосе 12 кГц и до 24 кбит/с в полосе 4 кГц.

В номинальной полосе 16 кГц в АВЦ организуются два канала, а именно 1-й с полосой 4 кГц для телефонной связи и 2-й с полосой 12 кГц для передачи данных аппаратурой пользователя.

Организуется работа до четырех одноканальных абонентских полукомплектов АВЦ на контролируемых пунктах с одноканальным диспетчерским полукомплектом АВЦ. При полосе телефонного канала 0,3-2,4 кГц аппаратура предоставит по одному дуплексному каналу связи для обмена телемеханической информацией со скоростью 100 Бод между диспетчерским и каждым полукомплектом на контролируемом пункте. При использовании внешних модемов со скоростью больше 100 Бод возможен только циклический или спорадический обмен телемеханической информацией между диспетчерским и абонентским полукомплектами.

Массогабаритные параметры аппаратуры

Наименование

Глубина, мм

Высота, мм

Установка

Аппаратура может быть установлена на стеллаже (до нескольких вертикальных рядов), в 19” стойке или закреплена на стене. Все кабели для внешних соединений подключаются спереди. По отдельному заказу поставляется промежуточный клеммник для подключения кабелей.

Условия окружающей среды

АВЦ предназначена для непрерывной круглосуточной работы в стационарных условиях, в закрытых помещениях без постоянного обслуживающего персонала при температуре от 0 до +45С О и относительной влажности вплоть до 85%. Работоспособность аппаратуры сохраняется при температуре окружающей среды до -25С О.

Связь по линиям электропередач снова стала активно обсуждаемой темой, на различных научных уровнях и прессе. В последние несколько лет эта технология пережила много взлетов и падений. В специальных периодических изданиях опубликовано множество статей с противоречивыми взглядами (выводами). Одни специалисты называет передачу данных по электрическим сетям технологией, умирающей, другие предсказывают блестящее будущее в сетях среднего и низкого напряжения, например, в офисах и жилых домах.

Технология, которая сегодня называется ВЧ связь по ЛЭП, на самом деле охватывает несколько различных и независящих друг от друга направлений и приложений. Это с одной стороны узкополосная передача точка-точка по ВЛ высокого напряжения (35-750 кВ), а с другой стороны широкополосная общесетевая передача данных, (BPL — Broadband Power Line), в сетях среднего и низкого напряжения (0,4-35 кВ).

Фирма Siemens является пионером в обоих направлениях. Первые ВЧ системы на высоковольтных линиях, фирмы Siemens были реализованы еще в 1926 году в Ирландии.

Привлекательность этой технологии для операторов сетей электроснабжения состоит в том, что для передачи информационных сигналов используется собственная инфраструктура электросети. Таким образом технология является не только очень экономичной — отсутствуют текущие расходы на содержание каналов связи, но и позволяет быть предприятиям энергоснабжения быть независимыми от провайдеров услуг связи, что особенно важно в аварийных случаях, и даже предписывается на законодательном уровне многих стран. ВЧ связь является универсальным технологическим решением как для предприятий занимающиеся передачей и распределением электроэнергии, так и компаний ориентированных на предоставлении услуг населению.

ВЧ связь в сетях высокого напряжения (35-750 кВ)

Во время бурного развития информационных технологий (90-е гг.) предприятия электроснабжения в промышленно развитых странах делали значительные инвестиции в прокладку линий оптической связи (ВОЛС) по ВЛ высокого напряжения в надежде обеспечить себе прибыльную долю перегретого рынка телекоммуникаций. В это время добрую старую технологию ВЧ похоронили заново. Затем раздутый информационно-технический пузырь лопнул, и во многих регионах наступило протрезвление. И именно в энергетических сетях установка оптических линий была приостановлена по экономическим соображениям, а технология ВЧ связи по ВЛ приобрела новое значение.

В результате применения цифровых технологий на высоковольтных сетях, сформировались новые требования к ВЧ системам.

В настоящее время, передача данных, речи осуществляется по быстрым цифровым каналам, а сигналы и данные систем защиты передаются одновременно (параллельно) по ВЧ линиям, и цифровым каналам (ВОЛС), образуя надежное резервирование (см. следующий раздел).

На ответвлениях сети и длинных участках линий электропередач использование ВОЛС экономически не целесообразно. Здесь технология ВЧ предлагает экономичную альтернативу для передачи речи, данных и сигналов-команд РЗ и ПА (РЗ — релейные защиты, ПА — противоаварийная автоматика) Рисунок1.

В связи c быстрым развитием систем автоматизации электроэнергетики и цифровых широкополосных сетей на магистральных линиях, изменились требования к современным системам ВЧ связи.

Сегодня на отводах сети ВЧ связь рассматривается как система, которая надежно передает данные систем защиты и обеспечивают прозрачный удобный интерфейс для данных и речи от широкополосных цифровых сетей до конечного потребителя при значительно большей пропускной способностью, по сравнению с обычными аналоговыми системами. С современной точки зрения высокая пропускная способность может быть достигнута только путем увеличения полосы частот. То, что в прошлом было невозможно из-за недостатка свободных частот, сегодня реализуется благодаря повсеместному применению оптических линий. Поэтому ВЧ системы усиленно используются только на ответвлениях сети. Также существуют варианты, когда отдельные участки сетей объединены между собой ВОЛС, что позволяет использовать одинаковые рабочие частоты гораздо чаще, чем в случае объединенных систем ВЧ связи.

В современных цифровых ВЧ системах плотность информации при использовании быстрых сигнальных процессоров и цифровых способов модуляции может быть увеличена по сравнению с аналоговыми системами с 0,3 до 8 бит/сек/Гц. Таким образом, для полосы частот 8 кГц в каждом направлении (прием и передача) может быть достигнута скорость 64 кбит/с.

В 2005 году фирма Siemens представила новую цифровую аппаратуру ВЧ связи «PowerLink», подтвердив лидирующее положение в данной области. Аппаратура PowerLink сертифицирована и для использования в России. Создавая PowerLink фирма Siemens создала мультисервисную платформу, пригодную как для аналогового, так и для цифрового применения Рисунок 2.

Ниже приводятся уникальные особенности этой системы

Оптимальное использование выделенной частоты: лучшая аппаратура ВЧ связи позволяют передавать данные со скоростью 64 кбит/с и менее, в то время как у PowerLink данный показатель составляет 76,8 кбит в секунду, занимая полосу 8 кГц.

Больше речевых каналов: еще одной инновацией фирмы Siemens, реализованной в системе PowerLink, является возможность передачи 3-х аналоговых речевых каналов при полосе 8 кГц вместо 2-х каналов в обычной аппаратуре.

Видеонаблюдение: PowerLink — первая система ВЧ связи позволяющая передавать сигнал видеонаблюдения.

AXC (Automatic Crasstalk Canceller) Автоматическое подавление перекрестных помех: раньше сближенные полосы приема-передачи требовали сложную ВЧ настройку для минимизации влияния передатчика на свой приемник. Запатентованный AXC блок заменил сложную гибридную настройку и соответствующий модуль, а качество приема-передачи улучшилось.

OSA (Optimized Sub channel Allocation) Оптимальное распределение подканалов: еще одно запатентованное решение компании Siemens гарантирует оптимальное распределение ресурсов при конфигурировании услуг (Речь, данные, защитная сигнализация) в выделенной частотной полосе. В результате итоговая передающая емкость увеличивается до 50%.

Повышенная гибкость: для обеспечения надежности инвестиций и возможности будущего использования фирма Siemens реализовала функцию «ease-up!» для простого и надежного обновления.

Многофункциональное оборудование: выполняя проект на базе комбинированной аппаратуры PowerLink вы можете забыть об ограничениях которые были в обычных терминалах при планировании частот. С PowerLink Вы сможете спроектировать систему ВЧ связи со всем набором услуг (передача речи, данных, сигналов РЗ и ПА) в доступной полосе. Один комплект PowerLink может заменить три (3) обычных аналоговые системы Рисунок 3.

Передача данных систем защиты

Технология ВЧ связи сейчас, как и раньше, играет важную роль в области передачи данных систем защиты. На магистральных и высоковольтных линиях с напряжением свыше 330 кВ, как правило, используются двойные системы защиты с разными способами измерения (например, дифференциальная защита и дистанционная защита). Для передачи данных систем защиты также используются различные способы передачи для обеспечения полной избыточности, включая коммуникационные каналы. Типичными каналами связи в этом случае является комбинация цифровых каналов по оптическим линиям для данных дифференциальной защиты и аналоговых ВЧ каналов для передачи сигналов-команд дистанционных защит. Для передачи сигналов защиты, технология ВЧ является самым надежным каналом. ВЧ связь является более надежным каналом передачи данных, чем другие, даже оптические линии не могут обеспечить такое качество по прошествии длительного времени. За пределами магистральных линий и на окончаниях сети, ВЧ связь часто становится единственным каналом для передачи данных систем защит.

Проверенная система SWT 3000 фирмы Siemens (Рисунок 4) является инновационным решением для передачи команд РЗ ПА с требуемой максимальной надежностью и одновременно с минимальным временем передачи команд в аналоговых и цифровых коммуникационных сетях.

Многолетний опыт в области передачи защитных сигналов позволил создать уникальную систему. Благодаря сложной комбинации цифровых фильтров и систем цифровой обработки сигналов удалось настолько подавить влияние импульсных помех — самых сильных помех в аналоговых каналах связи, что даже в сложных реальных условиях достигается надежная передача команд РЗ и ПА. Поддерживаются все известные режимы работы прямого отключения или разрешающего срабатывания с индивидуальными таймерами и скоординированной или нескоординированной передачей. Выбор режимов работы осуществляется с помощью программного обеспечения. Специфичные для российских электросетей функции про-тивоаварийной автоматики могут быть реализованы на той же аппаратной платформе SWT 3000.

При использовании цифровых интерфейсов идентификация устройства осуществляется по адресу. Таким образом возможно предотвращение случайного подключения других устройств по цифровым сетям.

Гибкая концепция два в одном позволяет использовать SWT 3000 во всех имеющихся каналах связи — медных кабелях, высоковольтных линиях, оптических линиях или цифровых в любых комбинациях Рисунок 5:

  • цифровая + аналоговая на одной платформе;
  • 2 избыточных канала в 1 системе;
  • дублированный блок питания в 1 системе;
  • 2 системы в 1 среде.

Являясь очень экономичным решением SWT 3000 может интегрироваться в ВЧ систему PowerLink. В этой конфигурации обеспечивается возможность дублированной передачи — аналоговая по технологии ВЧ и цифровая, например, по SDH.

ВЧ связь в сетях среднего и низкого напряжения (распределительные сети)

В отличие от ВЧ связи по ЛЭП высокого напряжения, в сетях среднего и низкого напряжения системы ВЧ разработаны для режимов работы точка — много точек. Также эти системы различаются по скорости передачи данных.

Узкополосные системы (цифровые каналы связи DLC) давно используются в электросетях для определения места сбоев, дистанционной автоматики и передачи измерительных данных. Скорость передачи в зависимости от применения от 1,2 кбит/с до < 100 кбит/с. Передача сигналов в линиях среднего напряжения осуществляется емкостным способом по экрану кабеля среднего напряжения.

На рынке коммуникационных систем фирма Siemens с 2000-го года успешно предлагает цифровую систему связи DCS3000. Постоянные изменения состояния электросети, вызванные частыми переключениями или подключением различных потребляющих устройств требуют реализации сложной технологической задачи — интегрированной производительной системы обработки сигналов, реализация, которой стала возможно только сегодня.

DCS3000 использует качественную технологию передачи данных OFDM — мультиплексирование с ортогональным частотным разделением сигналов. Надежная технология обеспечивает автоматическую адаптацию к изменениям в сети передачи. При этом передаваемая информация в определенном диапазоне оптимально модулируется на нескольких отдельных несущих и передается в стандартизированном для электросетей диапазоне CENELEC (от 9 до 148 кГц). При соблюдении разрешенного диапазона частот и мощности передачи необходимо преодолеть изменения в конфигурации электросети, а также типичные для электросети помехи, например, широкополосный шум, импульсные помехи и узкополосные помехи. Дополнительно обеспечивается надежная поддержка функции передачи данных с использованием стандартных протоколов путем повторения пакетов данных в случае неисправности. Система DCS3000 была разработана для низкоскоростной передачи данных относящихся к службам электроснабжения в диапазоне от 4 кГц до 24 кГц.

Сети среднего напряжения обычно эксплуатируются с открытой схемой, обеспечивающий двусторонний доступ к каждой трансформаторной станции.

Система DCS3000 состоит из модема, базового блока (BU) и индуктивных или емкостных модулей связи. Связь осуществляется по принципу главный-подчиненный (master — slave). Главный базовый блок DCS3000 в трансформаторной подстанции через подчиненные базовые блоки DCS3000 периодически опрашивает с них данные подключенных телеметрических приборов и передает их дальше на пульт управления Рисунок 6. Передача пакетов данных на пульт управления и на телеметрические приборы может осуществляться по стандарту IEC61870-5-101 или DNP3.

Ввод и вывод информационного сигнала реализуется перед или после распределительных устройств, так как экран кабеля, заземлен только на концах ввода, с помощью простых индуктивных соединений (CDI). Разделяемые ферритовые сердечники могут монтироваться на экране кабеля или на кабеле. В зависимости от конкретных условий. При монтаже отключение линии среднего напряжения не является обязательным.

Для других кабелей или воздушных линий ввод осуществляется по фазным проводам с помощью емкостных соединений (CDC). Для различных уровней напряжений фирма Siemens предлагает разные соединения для кабельных, воздушных распределительных систем и систем с газовой изоляцией.

Распределительная сеть может создваться и с другой топологией. Система DCS3000 прекрасно подходит для сетей среднего напряжения с линейной или древовидной топологией или топологией звезда. Если между двумя трансформаторными станциями имеется экранированная линия с защитным трансформатором, то она может напрямую подключаться к DCS3000. Для обеспечения постоянного доступа к каналу желательно создать логическое кольцо. Если это невозможно из-за топологии сети, то две линии могут быть объединены в логическое кольцо с помощью встроенного модема.

Созданная фирмой Siemens система DCS3000 является единственной успешно реализованной на практике системой связи в распределительной сети. Среди прочих заказов фирма Siemens создала системы связи в Сингапуре для Singapore Power Grid и в Макао для CEM Macao. Аргументом для реализации этих проектов послужила возможность избежать крупных затрат в строительство новой инфраструктуры линии связи. Фирма Siemens в течение 25 лет поставляет Singapur PG оборудованием для коммуникационных решений для передачи данных по экранированным кабелям. В 2000 году фирма Siemens получила заказ на поставку 1100 систем DCS3000, которые используются Singapore PG в распределительной электросети с напряжением 6 кВ для автоматизации и локализации повреждений. Распределительная сеть в основном построена по кольцевой схеме.

CEM Macao эксплуатирует свою распределительную электросеть только на одном уровне напряжения. Поэтому предъявляемые здесь требования похожи на требования к сети высокого напряжения. Особые требования предъявляются к надежности создаваемой системы связи. Поэтому система DCS3000 была расширена избыточными базовыми блоками и избыточными входами на пульт управления. Сеть среднего напряжения построена в виде кольца и обеспечивает передачу данных в двух направлениях. Более 1000 систем DCS3000 на протяжении многих лет обеспечивают надежную работу созданной сети связи и служат подтверждением ее эффективности.

В Египте трансформаторные станции не были оснащены входными каналами удаленного обслуживания. Создание новых соединений требовало больших затрат. Существовала принципиальная возможность использования радиомодемов, однако количество доступных частот для отдельных трансформаторных станций было ограничено и невозможно было избежать значительных дополнительных эксплуатационных затрат. Альтернативным решением стала система DCS3000. Данные удаленных терминалов телемеханики передавались на трансформаторную подстанцию. Система телемеханики высшего уровня собирала данные и передавала их по радиосвязи в концентраторы данных, откуда они в свою очередь передавались по существующим линиям удаленного контроля в центр управления. Для двух проектов фирма Siemens поставила более 850 систем DCS3000 в MEEDCO (10 кВ) и DELTA (6 кВ).

Широкополосные системы (Broadband Power Line BPL) После многолетних экспериментальных инсталляций в разных странах мира и многочисленных коммерческих проектов второе поколение технологии BPL развилось настолько, что стало привлекательной альтернативой для других широкополосных сетях доступа.

В сетях низкого напряжения BPL дает провайдеру возможность реализовывать на «последней миле» широкополосный доступ к услугам «трипл-плей»:

  • скоростной доступ в интернет;
  • IP-телефония;
  • видео.

Пользователи могут пользоваться этими предлагаемыми услугами, подключившись к любой электророзетке. Также возможна организация в доме локальной сети для соединения компьютеров и периферийных устройств без прокладки дополнительных кабелей.

Для коммунальных предприятий BPL сегодня не рассматривается. Для единственной используемой сегодня службы — дистанционного считывания показаний счетчиков — используются экономичные решения, например, GSM или медленные системы DLC. Однако в сочетании с широкополосными службами BPL становится привлекательной и для считывания показаний счетчиков. Таким образом «трипл-плей» превращается в «квадро-плей» (Рисунок 8).

В сети среднего напряжения BPL используется для широкополосных услуг как транспортный канал до ближайшей точки доступа провайдера. Для коммунальных служб — в настоящее время дистанционного считывания показаний счетчиков приборов АСКУЭ — достаточно узкополосных систем, работающих в отведенном CENELEC для коммунальных служб диапазоне от 9 до 148 кГц. Разумеется, системы BPL среднего напряжения со смешанными службами («совместный канал») могут использоваться и для провайдера и для коммунальных служб.

Значение BPL растет, чему свидетельствует увеличение инвестиций в данный вид связи коммунальных служб, провайдеров и промышленности. В прошлом основными действующими игроками рынка BPL были преимущественно небольшие предприятия, специализирующиеся исключительно на этой технологии, однако сегодня на этот рынок выходят крупные концерны, например, Schneider Electric, Misubishi Electric, Motorola и Siemens. Это еще один признак растущего значения данной технологии. Однако значительного прорыва пока не произошло по двум ключевым причинам:

1. Отсутствии стандартизации

BPL использует диапазон частот от 2 до 40 МГц (в США до 80 МГц), в котором работают различные коротковолновые службы, государственные органы и радиолюбители. Именно радиолюбители развернули в некоторых европейских странах компанию против BPL — и эта тема активно обсуждается. Международные институты стандартизации, например, ETSI, CENELEC, IEEE в специальных рабочих группах разрабатывают стандарт, регулирующий применение BPL в сетях среднего и низкого напряжения и распределительных сетях
в зданиях и гарантирующий сосуществование с другими службами.

2. Стоимость и бизнес-модель

Стоимость инфраструктуры Powerline с модемами, оборудованием присоединения и повторителями по прежнему высока по сравнению, например, технологией DSL. Высокая стоимость, с одной стороны объясняется небольшими объемами производства, а с другой стороны ранней стадией развития этой технологии. При использовании широкополосных услуг технология BPL должна быть конкурентоспособна по отношению к DSL как по производительности, так и по стоимости.

В отношении бизнес-модели роль коммунальных служб в создании стоимости может сильно варьироваться — от продажи права использования до полного предоставления провайдерских услуг. Главное отличие между различными моделями состоит в доле участия коммунальных служб.

Тенденции развития коммуникационных технологий

В телекоммуникационных сетях общего пользования сегодня более 90% трафика данных проходит через SDH/SONET. Такие каналы с фиксированной коммутацией сегодня становяться неэкономичными, так как они находятся в рабочем состоянии, даже когда не используются. Кроме того, рост рынка заметно переместился от речевых приложений (TDM) к передаче данных (пакетная ориентация). Переход от раздельных сетей мобильной и проводной связи, LAN и WAN к единой интегрированной IP-сети осуществляется в несколько этапов с учетом существующей сети. На первом этапе пакетно-ориентированный трафик данных передается в виртуальных пакетах существующей сети SDH. Это называется PoS («Пакетная передача через SDH») или EoS («Ethernet через SDH») с пониженной модульностью и, следовательно, более низкой эффективностью использования выделенной полосы. Следующий переход от TDM к IP предлагают сегодняшние системы NG SDH (SDH следующего поколения) с мультисервисной платформой, которая уже оптимизирована для пакетно-ориентированных приложений GFP (общая процедура синхронизации), LCAS (схема регулировки пропускной способности линии), RPR (гибкие пакетные кольца) и других приложений в среде SDH.

Эта эволюция в коммуникационных технологиях повлияла и на структуру управления энергосетями. Традиционно связь между управляющими центрами и подстанциями для систем диспетчерского управления и сбора данных базировалась на последовательных протоколах и выделенных каналах, обеспечивающих малое время прохождения сигнала и находящихся в состоянии постоянной готовности. Разумеется, выделенные каналы не обеспечивают гибкости, необходимой для эксплуатации современной электросети. Поэтому тенденция перехода на использование протокола TCP/IP (протокол управления передачей/межсетевой протокол) пришлась кстати. Основными стимулами перехода с последовательного протокола на протокол IP в системах диспетчерского управления и сбора данных являются:

  • распространение оптических систем обеспечивает увеличение пропускной полосы и устойчивость к электрическим помехам;
  • протокол TCP/IP и соответствующие технологии фактически стали стандартом для сетей передачи данных;
  • возникновение стандартизированных технологий, обеспечивающих требуемое качество функционирования сетей с протоколом TCP/IP (QoS качество обслуживания).

Эти технологии способные развеять технические опасения в надежности и возможности обеспечения быстрого времени реакции для приложений диспетчерского управления и сбора данных.

Этот переход к сети TCP/IP делает возможным интеграцию управления сетями диспетчерского управления и сбора данных в общее сетевое управление.

Изменение конфигурации в этом случае можно осуществлять загрузкой из центрального блока управления вместо требующего значительных затрат времени обновления микропрограмм соответствующих подстанций. Стандарты для основанных на IP протоколов телемеханических систем разрабатываются мировым сообществом и уже выпущены для связи на подстанциях (IEC61850) Рисунок 10.

Стандарты для связи между подстанциями и центром управления и между самими подстанциями пока находятся в стадии разработки. Параллельно перевод речевых приложений с TDM на VoIP, что позволит значительно упростить кабельные соединения на подстанциях, так как все устройства и IP-телефония используют одну локальную сеть.

В старых распределительных электросетях коммуникационные соединения устанавливались редко, так как уровень автоматизации был низким, а сбор данных счетчиков производился редко. Эволюция энергетических сетей в будущем будет требовать каналов связи именно на этом уровне. Постоянно растущее потребление в мегаполисах, дефицит сырьевых ресурсов, увеличение доли возобновляемых источников энергии, выработка электроэнергии в непосредственной близости от потребителя («распределенная генерация») и надежное распределение электроэнергии с малыми потерями — вот основные факторы, определяющие управление сетями завтрашнего дня. Связь в АСКУЭ в будущем будет использоваться не только для считывания данных потребления, но и как двусторонний коммуникационный канал для гибкого формирования тарифов, подключения систем подачи газа, воды и тепла, передачи счетов и предоставления дополнительных услуг, например, охранной сигнализации. Повсеместное предоставление возможности Ethernet-соединений и достаточная пропускная способность на участке от системы управления до потребителя необходимы для управления эксплуатацией будущих сетей.

Заключение

Интеграция телекоммуникационных служб в энергосетях потребует тесной интеграции различных технологий. В одной энергосети, в зависимости от топологии и требований, будут применяются несколько типов связи.

Системы ВЧ связи по ЛЭП могут стать решением данных задач. Развитие поддержки протокола IP, в особенности для ВЧ по ЛЭП высокого напряжения, обеспечивает значительное повышение пропускной способности. Фирма Siemens также вносит свой вклад в это развитие — уже сегодня разрабатываются технологии, позволяющие увеличить полосу пропускания и, следовательно, скорость передачи до 256 кбит/с. Технология BPL является прекрасной платформой для обеспечения связи в будущих сетях среднего и низкого напряжения для предоставления потребителю всех новых услуг. Будущие BPL-системы фирмы Siemens предлагают единую аппаратную платформу для узкополосных (CENELEC) и для широкополосных приложений. В энергетических сетях следующего поколения ВЧ связь займет прочное место и станет идеальным дополнением для оптических и беспроводных широкополосных систем.

Фирма Siemens следует этой тенденции и является одним из немногих мировых производителей как в области ВЧ, так и в области коммуникационных сетей, готовым предложить единое интегрированное решение.

Литература:

  1. Energie Spektrum, 04/2005: S. Schlattmann, R. Stoklasek; Digital-Revival von PowerLine.
  2. PEI, 01/2004: S. Green; Communication Innovation. Asian Electricity 02/2004: Powerline Carrier for HV Networtk.
  3. Middle East Electricity, Feb. 2003: J. Buerger: Transmission Possible.
  4. Die Welt, April 2001; J. Buerger: Daten vom Netz ubers Netz.
  5. VDI Nachrichten 41; Oktober; 2000 M. Wohlgenannt: Stromnetz ubertrugt Daten zur eigenen Steuerung. Elektrie Berlin 54 (2000) 5-6; J. Buerger, G. Kling, S. Schlattmann: Power Line Communication-Datenubertragung auf dem Stromverteilnetz.
  6. EV Report, Marz 2000: J. Buerger, G. Kling, S. Schlattmann: Kommunikationsruckrat fur Verteilnetze.
  7. ETZ 5/2000; G. Kling: Power Line Communication Technik fur den deregulierten Markt.

Karl Dietrich, компания «Siemens AG»,
департамет «Передачи и распределения электроэнергии PTD»,
подразделение EA4 CS.
Перевод: Е. А. МАЛЮТИН.

МОСКВА, 11 мая - РИА Новости. В книге Владимира Богомолова "Момент истины" о Великой Отечественной Войне часто упоминаются "записки по ВЧ" и аппараты ВЧ-связи, по которым верховный главнокомандующий связывался со штабами. Связь была защищенной, и ее невозможно было подслушать без использования специальных средств. Что это был за тип связи?

"ВЧ-связь", "кремлёвка", АТС-1 - система защищенных каналов связи, которая и по сей день обеспечивает стабильность и конфиденциальность переговоров руководителей государства, министерств, стратегических предприятий. Методы защиты многократно усложнились и усовершенствовались, но задача осталась неизменной: беречь разговоры государственного уровня от посторонних ушей.

В годы Великой Отечественной Войны, по словам маршала И.Х.Баграмяна "без ВЧ-связи не начиналось и не проводилось ни одного значительного военного действия. ВЧ-связь сыграла исключительную роль как средство управления войсками и содействовала выполнению боевых операций". Ей обеспечивались не только штабы, но и командование непосредственно на передовых линиях, на дозорных пунктах, плацдармах. Уже на исходе войны наиболее кратко вклад правительственной связи в победу охарактеризовал прославленный маршал К.К. Рокоссовский: "Использование средств правительственной связи в годы войны произвело революцию в управлении войсками".

В основу правительственной связи, появившейся в 1930-е годы, был положен принцип высокочастотного (ВЧ) телефонирования. Он позволяет передавать человеческий голос, "перенесенный" на более высокие частоты, делая его недоступным для прямого прослушивания и давая возможность передавать несколько переговоров по одному проводу.
Первые опыты с внедрением высокочастотной многоканальной телефонной связи проводились с 1921 г. на Московском заводе "Электросвязь" под руководством В.М. Лебедева. В 1923 г. ученый П.В. Шмаков завершил опыты по одновременной передаче двух телефонных переговоров на высоких частотах и одного на низкой частоте по кабельной линии протяженностью 10 км.
Большой вклад в развитие высокочастотной телефонной связи внес ученый, профессор Павел Андреевич Азбукин. Под его руководством в 1925 г. на Ленинградской научно-испытательной станции была разработана и изготовлена первая отечественная аппаратура ВЧ-связи, которую можно было использовать на медных телефонных проводах.

Чтобы понять принцип телефонной ВЧ-связи, вспомним, что обычный человеческий голос производит колебания воздуха в полосе частот 300-3200 Гц, и поэтому для передачи звука по обычному телефонному каналу необходима выделенная полоса в пределах от 0 до 4 кГц, где звуковые колебания будут преобразовываться в электромагнитные. Прослушать телефонный разговор по простой телефонной линии можно, просто подключив телефонный аппарат, телефонную трубку или динамик к проводу. Но можно пустить по проводу более высокую полосу частот, значительно превышающую частоту голоса - от 10 кГц и выше.

© Иллюстрация РИА Новости. Алина Полянина

© Иллюстрация РИА Новости. Алина Полянина

Это будет так называемый несущий сигнал. И тогда колебания, возникающие от человеческого голоса, можно "спрятать" в изменении его характеристик — частоты, амплитуды, фазы. Эти изменения несущего сигнала и будут передавать звук человеческого голоса, образуя огибающий сигнал. Попытки подслушать разговор, подключившись к линии простым телефонным аппаратом, без специального устройства не получится - будет слышен только высокочастотный сигнал.
Первые линии правительственной ВЧ-связи были протянуты от Москвы в Харьков и Ленинград в 1930 году и вскоре технология распространилась по всей стране. К середине 1941 г. сеть правительственной ВЧ-связи включала в себя 116 станций, 20 объектов, 40 трансляционных пунктов и обслуживала около 600 абонентов. Работы инженеров того времени позволили также запустить в 1930 году первую автоматическую станцию Москвы, которая впоследствии проработала 68 лет.

В годы Великой Отечественной войны Москва ни минуты не оставалась без телефонной связи. Работники музея МГТС показали уникальные экспонаты, которые обеспечивали в тяжелые годы бесперебойное сообщение.

В тот период ученые и инженеры решали задачи по усовершенствованию защиты линий связи и одновременно вели разработки сложной шифрующей аппаратуры. Разработанные системы шифрования были очень высокого уровня и по оценкам руководства армией во многом обеспечили успех воинских операций. Маршал Г.К. Жуков отмечал: "Хорошая работа шифровальщиков помогла выиграть не одно сражение". Сходного мнения придерживался и маршал А.М. Василевский: "Ни одно донесение о готовящихся военно-стратегических операциях нашей армии не стало достоянием фашистских разведок".

Третий

Второй

Первый

Схема защиты трансформатора , в которой имеется дифференциальная и газовая защиты (ДЗ), реагирующие на отключение трансформатора с двух сторон и максимальная токовая защита (СЗ), которая должна производить отключение только с одной стороны.

При составлении принципиальной схемы релейной защиты в свернутом виде может быть не обнаружена электрическая связь цепей отключения двух выключателей. Из развернутой схемы (Схема 1)следует, что при такой связи (поперечная цепь) неизбежна ложная цепь. Необходимы два оперативных контакта у защитных реле (Схема 2), действующие на два выключателя или разделительное промежуточное реле (Схема 3).

Рис. – Схема защиты трансформатора: 1 – неправильная; 2,3 – правильные

Неразделенные цепи высшего и низшего напряжения трансформатора.

Из рисунка (1) видна невозможность независимого отключения одной из сторон трансформатора без отключения другой.

Указанная ситуация исправляется включением промежуточного реле КL.

Рис. – Схемы защиты трансформатора: 1 – неправильная; 2 – правильная

Защиты генератора и трансформатора блока на электростанции действуют, как и требуется, на отключение выключателя и автомата гашения поля через разделительные промежуточные реле КL1 и КL2, но реле присоединены к разным секциям шинок питания, т.е. через разные предохранители.

Ложная цепь, показанная стрелками, образовалась через лампу контроля HL предохранителей в результате перегорания предохранителя FU2.

Рис. – Образование ложной цепи при перегорании предохранителя

1, 2, 3 – оперативные контакты реле

Схемы с питанием цепей вторичных соединений оперативным постоянным и переменным током

При хорошо изолированных от земли полюсах источника питания замыкание на землю в одной какой-либо точке цепи вторичных соединений обычно не влечет за собой вредных последствий. Однако второе замыкание на землю может вызвать ложное включение или отключение, неправильную сигнализацию и др. Профилактическими мерами в этом случае могут быть:

а) сигнализация о первом замыкании на землю в одном из полюсов; б) двухполюсное (двухстороннее) отделение элементов цепей управления – практически не применяется из-за сложности.

При изолированных полюсах (Рис.) заземление в точке а при разомкнутых замыкающих контактах 1 еще не вызовет ложного действия катушки командного органа К, но как только появится второе повреждение изоляции на землю в разветвленной сети положительного полюса, неминуема ложная работа аппарата, так как контакт 1 оказывается зашунтированным. Вот почему необходима сигнализация о замыкании на землю в оперативных цепях, и прежде всего на полюсах источника питания.



Рис. – Ложное срабатывание аппарата при втором замыкании на землю

Однако в сложных цепях с большим числом последовательно включенных оперативных контактов такая сигнализация может и не выявить возникшего замыкания на землю (Рис.).

Рис. – Неэффективность контроля изоляции в сложных цепях

При появлении заземления между контактами в точке а сигнализация невозможна.

В практике эксплуатации автоматических установок со слаботочной аппаратурой (до 60 В) прибегают иногда к намеренному заземлению одного из полюсов, например положительного (он более запыляется и подвержен электролитическим явлениям, т.е. и без того имеет ослабленную изоляцию). Это облегчает обнаружение и ликвидацию аварийного очага. В таком случае рекомендуется подсоединять катушку цепей управления одним концом к тому полюсу, который заземлен.

Все сказанное о питании цепей на постоянном оперативном токе, может быть отнесено и к оперативному переменному току с питанием цепей линейным напряжением. При этом следует учесть вероятность ложной работы (из-за емкостных токов) и резонансных явлений. Поскольку предусмотреть условия надежной работы в этом случае затруднительно, то иногда применяются вспомогательные изолирующие промежуточные трансформаторы с заземлением одного из зажимов на вторичной стороне.

Как видно из схемы, в этом случае при повреждении изоляции на землю в точке 2 перегорает предохранитель FU1 и замыкание на землю в точке 1 не вызывает ложного включения контактора К.

Схема включения конденсаторов с разделительными диодами

Высокочастотная (ВЧ) связь по линиям высокого напряжения получила значительное распространение во всех странах. В Украине этот вид связи широко используется в энергосистемах для передачи информации различного характера. Высокочастотные каналы используются для передачи сигналов релейной защиты линий, телеотключения выключателей, телесигнализации, телеуправления, телерегулирования и телеизмерения, для диспетчерской и административно-хозяйственной телефонной связи, а также для передачи данных.

Каналы связи по линиям электропередачи дешевле и надежнее каналов по специальным проводным линиям, так как не расходуются средства на сооружение и эксплуатацию собственно линии связи, а надежность линии электропередачи значительно выше надежности обычных проводных линий. Осуществление высокочастотной связи по линиям электропередачи связано с особенностями, не встречающимися в проводной связи.

Для подключения аппаратуры связи к проводам линий электропередачи необходимы специальные устройства обработки и присоединения, позволяющие отделить высокое напряжение от слаботочной аппаратуры и осуществить тракт для передачи ВЧ сигналов (рис. 1).

Рис. – Присоединение высокочастотной аппаратуры связи к линиям высокого напряжения

Одним из основных элементов схемы присоединения аппаратуры связи к линиям электропередачи является конденсатор связи высокого напряжения. Конденсатор связи, включаемый на полное напряжение сети, должен обладать достаточной электрической прочностью. Для лучшего согласования входного сопротивления линии и устройства присоединения емкость конденсатора должна быть достаточно большой. Выпускаемые сейчас конденсаторы связи дают возможность иметь емкость присоединения на линиях любого класса по напряжению не меньше 3000 пФ, что позволяет получить устройства присоединения с удовлетворительными параметрами. Конденсатор связи подключают к фильтру присоединения, который заземляет нижнюю обкладку этого конденсатора для токов промышленной частоты. Для токов высокой частоты фильтр присоединения совместно с конденсатором связи согласует сопротивление высокочастотного кабеля с входным сопротивлением линии электропередачи и образует фильтр для передачи токов высокой частоты от ВЧ кабеля в линию с малыми потерями. В большинстве случаев фильтр присоединения с конденсатором связи образуют схему полосового фильтра, пропускающего определенную полосу частот.

Ток высокой частоты, проходя через конденсатор связи по первичной обмотке фильтра присоединения на землю, .наводит во вторичной обмотке L2 напряжение, которое через конденсатор С1 и соединительную линию попадает на вход аппаратуры связи. Ток промышленной частоты, проходящий через конденсатор связи, мал (от десятков до сотен миллиампер), и падение напряжения на обмотке фильтра присоединения не превышает нескольких вольт. При обрыве или плохом контакте в цепи фильтра присоединения он может оказаться под полным напряжением линии, и поэтому в целях безопасности все работы на фильтре производят при заземлении нижней обкладки конденсатора специальным заземляющим ножом.

Согласованием входного сопротивления ВЧ аппаратуры связи и линии достигают минимальных потерь энергии ВЧ сигнала. Согласование с воздушной линией (ВЛ), имеющей сопротивление 300–450 Ом, не всегда удается выполнить полностью, так как при ограниченной емкости конденсатора связи фильтр с характеристическим сопротивлением со стороны линии, равным характеристическому сопротивлению ВЛ, может иметь узкую полосу пропускания. Для получения.нужной полосы пропускания в ряде случаев приходится допускать повышенное (до 2 раз) характеристическое сопротивление фильтра со стороны линии, мирясь с несколько большими потерями вследствие отражения. Фильтр присоединения, устанавливаемый у конденсатора связи, соединяют с аппаратурой высокочастотным кабелем. К одному кабелю может быть подключено несколько высокочастотных аппаратов. Для ослабления взаимных влияний между ними применяют разделительные фильтры.

Каналы системной автоматики – релейной защиты и телеотключения, которые должны быть особо надежны, требуют обязательного применения разделительных фильтров для отделения других каналов связи, работающих через общее устройство присоединения.

Для отделения ВЧ тракта передачи сигнала от оборудования высокого напряжения подстанции, которое может иметь низкое сопротивление для высоких частот канала связи, в фазный провод линии высокого напряжения включается высокочастотный заградитель. Высокочастотный заградитель состоит из силовой катушки (реактора), по которой проходит рабочий ток линии, и элемента настройки, присоединяемого параллельно катушке. Силовая катушка заградителя с элементом настройки образуют двухполюсник, который имеет достаточно высокое сопротивление на рабочих частотах. Для тока промышленной частоты 50 Гц заградитель имеет очень малое сопротивление. Находят применение заградители, рассчитанные на запирание одной или двух узких полос (одно- и двухчастотные заградители) и одной широкой полосы частот в десятки и сотни килогерц (широкополосные заградители). Последние получили наибольшее распространение, несмотря на меньшее сопротивление в полосе заграждения по сравнению с одно- и двухчастотными. Эти заградители дают возможность запирать частоты нескольких каналов связи, подключенные к одному и тому же проводу линии. Высокое сопротивление заградителя в широкой полосе частот можно обеспечить тем легче, чем больше индуктивность реактора. Получить реактор с индуктивностью в несколько миллигенри сложно, так как это приводит к значительному увеличению размеров, массы и стоимости заградителя. Если ограничить активное сопротивление в по­лосе запираемых частот до 500–800 Ом, что достаточно для большинства каналов, то индуктивность силовой катушки может быть не более 2 мГ.

Заградители выпускаются с индуктивностью от 0,25 до 1,2 мГ на рабочие токи от 100 до 2000 А. Рабочий ток заградителя тем выше, чем выше напряжение линии. Для распределительных сетей выпускают заградители на 100–300 А, а для линий 330 кВ и выше наибольший рабочий ток заградителя 2000 А.

Различные схемы настройки и необходимый диапазон запираемых частот получают, используя конденсаторы, дополнительные катушки индуктивности и резисторы, имеющиеся в элементе настройки заградителя.

Присоединение к линии можно осуществить различными способами. При несимметричной схеме ВЧ аппаратуру включают между проводом (или несколькими проводами) и землей по схемам «фаза – земля» или «две фазы – земля». При симметричных схемах ВЧ аппаратуру подключают между двумя или несколькими проводами линий («фаза – фаза», «фаза – две фазы»). На практике применяют схему «фаза – фаза». При включении аппаратуры между проводами разных линий используют лишь схему «фаза – фаза разных линий».

Для организации ВЧ каналов по линиям высокого напряжения применяют диапазон частот 18–600 кГц. В распределительных сетях используют частоты, начиная от 18 кГц, на магистральных линиях 40–600 кГц. Для получения удовлетворительных параметров ВЧ тракта на низких частотах необходимы большие значения индуктивностей силовых катушек заградителей и емкостей конденсаторов связи. Поэтому нижняя граница по частоте ограничена параметрами устройств обработки и присоединения. Верхняя граница частотного диапазона определяется допустимым значением линейного затухания, которое растет с увеличением частоты.

1. ВЫСОКОЧАСТОТНЫЕ ЗАГРАДИТЕЛИ

Схемы настройки заградителей . Высокочастотные заградители обладают высоким сопротивлением для токов рабочей частоты канала и служат для отделения шунтирующих ВЧ тракт элементов (подстанций и ответвлений), которые при отсутствии заградителей могут привести к увеличению затухания тракта.

Высокочастотные свойства заградителя характеризуются полосой заграждения, т. е. полосой частот, в которой сопротивление заградителя не меньше некоторого допустимого значения (обычно 500 Ом). Как правило, полоса заграждения определяется по допустимому значению активной составляющей сопротивления заградителя, но иногда по допустимому значению полного сопротивления.

Заградители отличаются по значениям индуктивностей, допустимым токам силовых катушек и по схемам настройки. Применяются одно- и двухчастотные резонансные или притуплённые схемы настройки и широкополосные схемы (по схеме полного звена и полузвена полосового фильтра, а также по схеме полузвена фильтра верхних частот). Заградители с одно- и двух-частотными схемами настройки часто не дают возможности заградить нужную полосу частот. В этих случаях применяют заградители с широкополосными схемами настройки. Такие схемы настройки применяют при организации каналов защиты и связи, имеющих общую аппаратуру присоединения.

При протекании тока через катушку заградителя возникают электродинамические усилия, действующие вдоль оси катушки, и радиальные, стремящиеся разорвать виток. Осевые усилия неравномерны по длине катушки. Большие усилия возникают на краях катушки. Поэтому шаг витков на краю делают больше.

Электродинамическая стойкость заградителя определяется максимальным током КЗ, который он выдерживает. В заградителе КЗ-500 при токе 35 кА возникают осевые усилия в 7 тонн (70 кН).

Защита элементов настройки от перенапряжений . Волна перенапряжения, возникающая на воздушной линии, попадает на заградитель. Напряжение волны распределяется между конденсаторами элемента настройки и входным сопротивлением шин подстанции. Силовая катушка представляет собой большое сопротивление для волны с крутым фронтом и при рассмотрении процессов, связанных с перенапряжениями, ее можно не учитывать. Для защиты конденсаторов настройки и силовой катушки параллельно силовой катушке подсоединяют разрядник, ограничивающий напряжение на элементах заградителя до безопасного для них значения. Пробивное напряжение разрядника по условиям деионизации искрового промежутка должно быть в 2 раза больше сопровождающего напряжения, т. е. падения напряжения на силовой катушке от максимального тока кз U сопр =I к.з. ωL.

При большом предразрядном времени пробивное напряжение конденсаторов значительно больше пробивного напряжения разрядников; при малом (менее 0,1 мкс) пробивное напряжение конденсаторов становится меньше пробивного напряжения разрядника. Поэтому необходимо задерживать рост напряжения на конденсаторах до момента срабатывания разрядника, что достигают включением добавочной катушки индуктивности L д последовательно с конденсатором (рис. 15). После пробоя разрядника напряжение на конденсаторе поднимается медленно и дополнительный разрядник, включенный параллельно конденсатору, хорошо его защищает.

Рис. – Схемы высокочастотных заградителей с устройством защиты от перенапряжений: а) одночастотная; б) двухчастотная

2. КОНДЕНСАТОРЫ СВЯЗИ

Общие сведения . Конденсаторы связи служат для подключения ВЧ аппаратуры связи, телемеханики и защиты к линиям высокого напряжения, а также для отбора мощности и измерения напряжения.

Сопротивление конденсатора обратно пропорционально частоте напряжения, прикладываемого к нему, и емкости конденсатора. Реактивное сопротивление конденсатора связи для токов промышленной частоты, следовательно, значительно больше, чем для частоты 50 – 600 кГц каналов связи телемеханики и защиты (в 1000 раз и более), что позволяет с помощью этих конденсаторов разделить токи высокой и промышленной частоты и предотвратить попадание высокого напряжения на электроустановки. Токи промышленной частоты отводятся на землю через конденсаторы связи, минуя аппаратуру ВЧ. Конденсаторы связи рассчитаны на фазное (в сети с заземленной нейтралью) и на линейное напряжение (в сети с изолированной нейтралью).

Для отбора мощности применяют специальные конденсаторы отбора, включаемые последовательно с конденсатором связи.

В названиях элементов конденсаторов буквы обозначают последовательно характер применения, вид заполнителя, исполнение; цифры – номинальное фазное напряжение и емкость. СМР – связи, маслонаполненный, с расширителем; СММ – связи, маслонаполненный, в металлическом кожухе. Для различных напряжений конденсаторы связи комплектуют из отдельных элементов, соединенных последовательно. Элементы конденсаторов СМР-55/√3-0,0044 рассчитаны на нормальную работу при напряжении 1,1 U иом, элементы СМР-133/√3-0,0186 – на 1,2U иом. Емкость конденсаторов для классов изоляции 110, 154, 220, 440 и 500 кВ принимается с допуском от -5 до +10%.

3. ФИЛЬТРЫ ПРИСОЕДИНЕНИЯ

Общие сведения и расчетные зависимости. Высокочастотную аппаратуру подключают к конденсатору не непосредственно через кабель, а через фильтр присоединения, который компенсирует реактивное сопротивление конденсатора, согласовывает волновые сопротивления линии и ВЧ кабеля, заземляет нижнюю обкладку конденсатора, чем образуется путь для токов промышленной частоты и обеспечивается безопасность работ.

При обрыве цепи линейной обмотки фильтра на нижней обкладке конденсатора появляется фазное напряжение по отношению к земле. Поэтому все переключения в цепи линейной обмотки фильтра присоединения производят при включенном заземляющем ноже.

Фильтр ОФП-4 (рис. ,) предназначен для работы на линиях 35, 110 и 220 кВ по схеме «фаза – земля» с конденсатором связи 1100 и 2200 пФ и с кабелем, имеющим волновое сопротивление 100 Ом. Фильтр имеет три частотных диапазона. Для каждого диапазона имеется отдельный воздушный трансформатор, залитый изоляционной массой.

Рис. – Принципиальная схема фильтра-присоединения ОФП-4

6. ОБРАБОТКА ГРОЗОЗАЩИТНЫХ ТРОСОВ, АНТЕННЫ

Грозозащитные тросы линий высокого напряжения могут быть также использованы в качестве каналов передачи информации. Тросы изолированы от опор с целью экономии электроэнергии, при атмосферных перенапряжениях они заземляются через пробиваемые искровые промежутки. Стальные тросы имеют высокое затухание для сигналов высокой частоты и позволяют передавать информацию лишь на коротких линиях на частотах не более 100 кГц. Биметаллические тросы (стальные тросы с алюминиевым покрытием), тросы алюмовелд (из скрученных сталеалюминевых проволок), одноповивные тросы (один повив – алюминиевые проволоки, остальные повивы – стальные) дают возможность организовать каналы связи с малыми затуханиями и уровнями помех. Помехи меньше, чем в каналах связи по фазным проводам, а аппаратура ВЧ обработки и присоединения проще и дешевле, так как токи, текущие по тросам, и напряжения на них невелики. Биметаллические провода дороже стальных, поэтому их применение может быть оправдано, если ВЧ каналы по фазным проводам не могут быть выполнены. Это может быть на сверхдальних, а иногда на дальних электропередачах.

Каналы по тросам можно включать по схемам «трос – трос», «трос – земля» и «два троса – земля». На ВЛ переменного тока тросы меняют местами через каждые 30 – 50 км для уменьшения в них наводок токов промышленной частоты, что вносит дополнительное затухание в 0,15 Нп на каждое скрещивание в схемах «трос – трос», не влияя на схему «два троса – земля». На передачах постоянного тока можно применять схему «трос – трос», так как здесь скрещивания не нужно.

Связь по грозозащитным тросам не прерывается при заземлении фазных проводов, не зависит от схемы коммутации линий.

Антенная связь применяется для присоединена к ВЛ передвижной ВЧ аппаратуры. Провод подвешивают вдоль проводов ВЛ или используют участок грозозащитного троса. Такой экономичный способ присоединения не нуждается в заградителях и конденсаторах связи.