Создание проекта. Использование среды разработки IAR Ebedded Workbench IDE Iar создание проекта

Используя разные микроконтроллеры, возникает необходимость выбрать удобную среду разработки. Нам есть из чего выбирать – будь то IAR или Keil µVision, или, даже Code Composer Studio.
Ниже пойдет речь об IAR Embedded Workbench IDE на примере STM32F10x. Эта среда разработки достаточно мощная. Имеются всякие вкусняшки.

Настройка IAR

В первую очередь нужно настроить IAR.
Основные настройки
После запуска IAR заходим в опции (Tools->Options… ). Сразу же будет выбран пункт Editor . В поле Ident size число указывает на количество пробелов при нажатии Tab. Для меня удобно использовать число 4 .
Стоит уделить внимание пункту Key Bindings . Здесь можно назначить горячие клавиши. Согласитесь, все-таки, удобно и быстро пользоваться комбинациями клавиш. Пока что, можно назначить комбинацию Ctrl+W как закрытие активных вкладок. Для этого в Menu выбираем Window и для команды Close active tab назначаем Ctrl+W .
С остальными горячими клавишами познакомимся ниже.
Настройки проекта
Допустим, создавать новый проект мы умеем (если нет, то Project->Create New Project… ). После создания проекта нам доступны две конфигурации проекта – Debug и Release . Переключаться между ними можно в окне Workspace :


Рис. 1

Удобно использовать несколько конфигураций. В конфигурации Debug можно выбрать симулятор программатора, а в Release – конкретный программатор (к примеру, J-Link). Что позволит сначала отлаживать в симуляторе, не теряя время на прошивку микроконтроллера, а потом уже прошивать под конфигурацией Release .
Добавлять новые конфигурации можно через меню: Project->Edit Configurations .
Опции самого проекта – Project->Options… (Alt+F7 ). Для открытия окна опций проекта нужно выделить сам проект в окне Workspace , иначе откроются опции того файла, который был выделен.
Настройки буду приводить для конфигурации Debug (в скобках – для Release ).
Открываем опции (Alt+F7 )

Некоторые приемы

Горячие клавиши
Поиск:
Обычный поиск – Ctrl+F
Найти дальше – F3
Поиск по файлам проекта – Ctrl+Shift+F
Шагать по найденному (или по ошибкам/ворнингам) – F4
Навигация по проекту:
Перейти к объявлению переменной (даже, если она в другом файле) – F12 - очень полезная функция!
Навигация вперед – Alt+Right
Навигация назад – Alt+Left
Разное:
Открыть header/source – Ctrl+Shift+H (или П.К.М в редакторе, и в контекстном меню выбрать Open Header/Source File )
Закомментировать выделенный блок – Ctrl+K
Разкомментировать – Ctrl+Shift+K
Выделить содержимое скобок – Ctrl+B
Автовыравнивание – Ctrl+T
Поставить/убрать Breakpoint – F9
Вставить шаблон – Ctrl+Shift+Space – тоже интересная штука.

Чтобы добавить свой шаблон, нужно открыть файл CodeTemplates.ENU.txt через меню Edit->Code Templates->Edit Templates
Теперь можно ввести примерно следующее:

#TEMPLATE "&Warning","Введите текст:"="Не забыть изменить" #warning %1

Синтаксис шаблона:

#TEMPLATE ,[=default value], ...

Знак «&» нужен для быстрого доступа (буква будет подчеркнута). Можно использовать знак «>» для создания подменю. Все интуитивно понятно.

Сохраним файл и вызовем Template menu (Ctrl+Shift+Space ). В нем выберем Warning:


Рис. 3

Введем необходимый текст:


Рис. 4

Жмякаем по кнопке OK. В результате, появится строчка:

Рис. 5

При компиляции все ворнинги и ерроры (#error <текст>) будут выводиться в окне Build .

Заключение

В этой статье были приведены основные возможности IAR, позволяющие достаточно быстро ориентироваться в проекте. Рекомендую использовать горячие клавиши. Это значительно сокращает время работы над проектом.
Буду признателен, если читатель дополнит или поправит меня.

Среда IAR Workbench проприетарна и требует лицензирования (в случае если ваш код превышает 32 КБ), однако её вполне хватает для домашнего использования.

Непосредственно среда разработки, в состав которой входит компилятор. После установки IAR потребуется зарегистрировать его, заполнив анкету на сайте компании. Укажите реальный почтовый ящик, на него вам вышлют лицензионный ключ.

С сайта ST Microelectronics нужно будет скачать архив - в нём содержатся:

  • CMSIS (Cortex Microcontroller Software Interface Standard) - библиотека, определяющая работу ядра, того самого Cortex M3 (о ней мы поговорим позже);
  • SPL (Standart Peripheral Library) - стандартная периферийная библиотека, которая сэкономит вам много сил в конфигурации той или иной периферии;
  • Examples - если нужно изучить, как работает новая для вас периферия, то в этой папке лежит множество примеров на все случаи жизни.

Запустив IAR, создайте рабочее пространство File New Workspace . Далее новый проект, меню Project Create New Project…

Программу можно писать на ассемблере, Си или С++. Мы будем использовать язык программирования Си.

Созданный проект необходимо настроить, для этого открываем меню Project Options . Во вкладке General Options выбираем целевой микроконтроллер - STM32F100x4 .


Кроме того, в Library Configuration ставим галочку Use CMSIS . Среда IAR уже включает в себя эту библиотеку, и добавлять её к проекту необязательно, однако новые версии могут выдавать предупреждение вида:

Warning : Label ‘xxxxx’ is defined pubweak in a section implicitly declared root

Проблема решается заменой некоторых строк во встроенной библиотеке CMSIS: в местах упоминания CODE:REORDER добавьте NOROOT(1) . Например:

PUBWEAK NMI_Handler
SECTION .text:CODE:REORDER:NOROOT(1)
NMI_Handler

Далее добавляем путь, по которому будут храниться файлы *.c и *.h - для этого заходим во вкладку C/C++ Compile r ⇒ Preprocessor и добавляем &PROJDIR& (переменная, содержащий путь к папке с проектом).


В разделе Debugger выбираем в качестве отладчика ST-LINK . Ставим галочки Use flash loader и Verify во вкладке Download .

Читая местные обзоры, уже не раз подумывал о покупке паяльника с жалом T12. Давно хотелось чего-то портативного с одной стороны, достаточно мощного с другой стороны, и, разумеется, нормально поддерживающего температуру.
У меня есть относительно много паяльников, купленных в разные времена и под разные задачи:

Есть совсем древние ЭПСН-40 и «москабель» 90Вт, чуть более новый ЭМП-100 (топорик), совсем новый китайский TLW 500W. Последние два особенно хорошо сохраняют температуру (даже при пайке медных труб), но вот паять ими микросхемы не очень удобно:). Попытка использования ZD-80 (пистолетик с кнопкой) не вышла - ни мощности, ни нормального поддержания температуры. Прочая «электронная» мелочь типа Antex cs18/xs25 годится только для совсем мелочей, да и встроенной регулировки не имеет. Лет 15 назад пользовался den-on"овским ss-8200, но жала там совсем малюсенькие, термодатчик далеко и градиент температуры огромен - несмотря на заявленные 80W, на жале по ощущениям и трети не будет.
В качестве стационарного варианта я уж лет 10 использую Lukey 868 (это практически 702, только нагреватель керамический и еще какие-то мелочи). Но портативности в ней нет никакой, с собой в карман или мелкую сумку никак не взять.
Т.к. на момент покупки я еще не был уверен «а нужно ли мне оно», был взят минимальный бюджетный вариант с K-жалом и ручкой, максимально похожей на привычный паяльник от Lukey. Возможно, что кому-то она кажется не очень удобной, но для меня важнее, что-бы ручки обоих используемых паяльников привычно и одинаково лежали в руке.
Дальнейший обзор можно будет условно разделить на две части - «как из запчастей сделать устройство» и попытка анализа «как это устройство и прошивка контроллера работают».
К сожалению, продавец убрал именно этот SKU, поэтому могу дать только ссылку на снимок товара из журнала заказов. Впрочем, нет никаких проблем найти аналогичный товар.

Часть 1 - конструкция

После макетной проверки работоспособности, встал вопрос о выборе конструкции.
Имелся почти подходящий блок питания (24v 65W), высотой практически 1:1 с платой управления, чуть уже ее и длиной около 100мм. Учитывая, что этот блок питания питал какую-то сдохшую (не по его вине!) связную и не дешевую lucent-овскую железку, а в его выходном выпрямителе стоят две диодные сборки на суммарные 40А, я решил, что он не сильно хуже распространенного здесь китайца на 6A. Заодно и валяться не будет.
Тестовая проверка на проверенном временем эквиваленте нагрузки (ПЭВ-100, выкручен на примерно 8 Ом)

показала, что БП практически не греется - за минут 5 работы ключевой транзистор, несмотря на свой изолированный корпус, нагрелся градусов до 40 (чуть теплый), диоды потеплее (но руку не обжигает, держать вполне комфортно), а напряжение по прежнему 24 вольта с копейками. Выбросы увеличились до сотни милливольт, но для данного напряжения и этого применения сие вполне нормально. Собственно, я остановил опыт из-за нагрузочного резистора - на его меньшей половине выделялось около 50W и температура перевалила за сотню.
В результате минимальные габариты были определены (БП + плата управления), следующим этапом шел корпус.
Поскольку одним из требований была портативность, вплоть до возможность распихать по карманам, вариант с готовыми корпусами отпал. Доступные универсальные пластмассовые корпуса совсем не годились по размерам, китайские алюминиевые корпуса под T12 для карманов куртки тоже великоваты, да и ждать еще месяц не хотелось. Вариант с «напечатанным» корпусом не проходил - ни прочности, ни теплостойкости. Прикинув возможности и вспомнив пионерскую молодость, решил сделать из древнего одностороннего фольгированного стеклотекстолита, валяющегося еще со времён СССP. Толстенная фольга (микрометр на тщательно разглаженном кусочке показал 0.2мм!) все равно не позволяла травить дорожки тоньше миллиметра из-за бокового подтравливания, а для корпуса - самое то.
Но лень вкупе с нежеланием пылить категорически не одобрила распиловку ножовкой или резаком. После прикидки имеющихся технологических возможностей, решил попробовать вариант распиловки текстолита на электрическом плиткорезе. Как оказалось - в высшей степени удобный вариант. Диск режет стеклотекстолит без всяких усилий, кромка получается практически идеальная (с резаком, ножовкой или лобзиком даже не сравнить), ширина по длине реза тоже одинаковая. И, что немаловажно, вся пыль остается в воде. Понятно, что если нужно отпилить один маленький кусочек, то разворачивать плиткорез слишком долго. Но даже на этот маленький корпус нужно было под метр реза.
Далее был спаян корпус с двумя отделениями - одно под блок питания, второе для платы управления. Первоначально, я не планировал разделение. Но, как и при сварке, припаянные в угол пластины при остывании стремятся уменьшить угол и дополнительная перепонка очень полезна.
Передняя панель согнута из алюминия в форме буквы П. В верхнем и нижнем отгибе нарезана резьба для фиксации в корпусе.
В результате получился такое (с устройством я до сих пор «играюсь», поэтому покраска пока очень черновая, из остатков старого балончика и без шлифовки):

Габаритные размеры самого корпуса - 73 (ширина) x 120 (длина) x 29 (высота). Ширину и высоту сделать меньше нельзя, т.к. размеры платы управления 69 x 25, да и найти более короткий блок питания тоже не просто.
Сзади установлен соединитель под стандартный электропровод и выключатель:


К сожалению, черного микровыключателя в хламе не оказалось, надо будет заказать. С другой стороны - белый заметнее. А вот соединитель я специально ставил стандартным - это позволяет в большинстве случаев не брать с собой дополнительный провод. В отличие от варианта с ноутбучной розеткой.
Вид снизу:

Черный изолятор из резиноподобного материала остался от исходного блока питания. Он довольно толстый (чуть меньше миллиметра), теплостойкий и очень плохо режется (отсюда и грубый вырез для пластиковой распорки - чуть-чуть не влезало). По ощущениям - как асбест, пропитанный резиной.
Слева от блока питания - радиатор выпрямителя, справа - ключевого транзистора. В оригинальном БП радиатором была тонкая полоска алюминия. Я решил «усугубить» на всякий случай. Оба радиатора изолированы от электроники, поэтому могут свободно прилегать к медным поверхностям корпуса.
На перепонке смонтирован дополнительный радиатор для платы управления, контакт с d-pak корпусами обеспечивается термопрокладкой. Пользы не много, но все лучше воздуха. Что бы исключить замыкание, пришлось чуть обкусить выступающие контакты «авиационного» разъема.
Для наглядности - паяльник рядом с корпусом:

Результат:
1) Паяльник работает примерно как заявлено и вполне помещается в карманах куртки.
2) В старом хламе утилизированы и более не валяются: блок питания, кусок стеклотекстолита 40-летней давности, балончик с нитроэмалью 1987 года выпуска, микровыключатель и небольшой кусок алюминия.

Разумеется, с точки зрения экономической целесообразности существенно проще купить готовый корпус. Пусть материалы были и практически бесплатны, но «время-деньги». Просто в моем списке задач вообще не фигурировала задача «сделать дешевле».

Часть 2 - заметки о функционировании

Как можно заметить, в первой части я вообще не упомянул о том, как все это работает. Мне показалось целесообразным не смешивать описание своей личной конструкции (довольно «колхозно-самопальной» на мой взгляд) и функционирование контроллера, который идентичен или похож у многих.

В качестве некоторого предварительного предупреждения хочу сказать:
1) Разные контроллеры имеют несколько разную схемотехнику. Даже у внешне одинаковых плат могут быть немножко отличающиеся компоненты. Т.к. у меня имеется только одно мое конкретное устройство, я никак не могу гарантировать совпадение с другими.
2) Прошивка контроллера, которую я анализировал, не единственная имеющаяся. Она распространенная, но у Вас может стоять другая прошивка, функционирующая другим образом.
3) Я нисколько не претендую на лавры первооткрывателя. Многие моменты уже были ранее освещены другими обозревателями.
4) Дальше будет много скучных букв и ни одной веселой картинки. Если внутреннее устройство не интересует - остановитесь здесь.

Обзор конструкции

Дальнейшие выкладки будут во многом связаны со схемотехникой контроллера. Для понимания его работы точная схема не обязательно, вполне достаточно рассмотреть основные компоненты:
1) Микроконтроллер STC15F204EA. Ничем особо не выдающийся чип семейства 8051, заметно более быстрый, чем оригинал (оригинал 35 летней давности, да). Питается от 5В, имеет на борту 10-битный АЦП с коммутатором, 2x512байт nvram, 4KБ программной памяти.
2) Стабилизатор на +5В, состоящий из 7805 и мощного резистора для уменьшения тепловыделения(?) на 7805, сопротивлением 120-330 Ом (на разных платах разное). Решение в высшей степени бюджетное и тепловыделяющее.
3) Силовой транзистор STD10PF06 с обвязкой. Работает в ключевом режиме на низкой частоте. Ничего выдающегося, старый.
4) Усилитель напряжения термопары. Подстроечный резистор регулирует его усиление. Имеет защиту на входе (от 24В) и подключен на один из входов АЦП МК.
5) Источник опорного напряжения на TL431. Подключен на один из входов АЦП МК.
6) Датчик температуры платы. Также подключен к АЦП.
7) Индиктор. Подключен к МК, работает в режиме динамической индикации. Подозреваю, что один из основных потребителей +5В
8) Ручка управления. Вращение регулирует температуру (и другие параметры). Линия кнопки в очень многих моделях не запаяна или разрезана. Если соединить, то позволяет настраивать дополнительные параметры.

Как несложно заметить, все функционирование определяется микроконтроллером. Почему китайцы ставят именно такой - мне неизвестно, он не сильно дешевый (около $1, если брать несколько штук) и впритык по ресурсам. В типовой китайской прошивке остаются свободными буквально десяток байт памяти программ. Сама прошивка написана на С или чем-то аналогичном (там видны явные хвосты библиотеки).

Функционирование прошивки контроллера

Исходных текстов я не имею, но IDA никуда не делась:). Механизм работы довольно простой.
При начальном запуске прошивка:
1) инициализирует устройство
2) загружает параметры из nvram
3) Проверяет нажатость кнопки, если нажата - ждет отжатия и запускает п/п настройки расширенных параметров (Pxx) Там много параметров, если нет понимания, то лучше их не трогать. Могу выложить раскладку, но опасаюсь спровоцировать проблемы.
4) Выводит на экран «SEA», ждет и запускает основной цикл работы

Есть несколько режимов работы:
1) Обычный, нормальное поддержание температуры
2) Частичное энергосбережение, температура 200 градусов
3) Полное отключение
4) Режим настройки P10(шаг настройки температуры) и P4(усиление ОУ термопары)
5) Режим альтернативного управления

После запуска работает режим 1.
При коротком нажатии кнопки производится переход в режим 5. Там можно повернуть регулятор влево и уйти в режим 2 или вправо - увеличить температуру на 10 градусов.
При длительном нажатии производится переход в режим 4.

В предыдущих обзорах было много споров, как правильно устанавливать вибродатчик. По имеющейся у меня прошивке могу сказать однозначно - без разницы. Уход в режим частичного энергосбережения выполняется по отсутствию изменений состояния вибродатчика, отсутствию существенных изменений температуры жала и отсутствию сигналов от ручки - все это на протяжении 3х минут. Замкнут вибродатчик или разомкнут - совершенно неважно, прошивка анализирует только изменения в состоянии. Вторая часть критерия тоже интересна - если вы паяете, то температура жала неминуемо плавает. И если фиксируется отклонение более чем на 5 градусов от заданной, выхода в режим энергосбережения не будет.
Если режим энергосбережения продлится больше заданного, то паяльник полностью выключится, на индикаторе будут нули.
Выход из энергосберегающих режимов - по вибрации или по ручке управления. Возврата из полного энергосбережения в частичный не бывает.

Поддержанием температуры МК занимается в одном из таймерных прерываний (их задействовано два, второе занимается дисплеем и прочим. Зачем так сделано непонятно - интервал прерывания и другие настройки выбраны одинаковые, вполне можно было обойтись единым прерыванием). Цикл управления состоит из 200 таймерных прерываний. На 200-м прерывании нагрев обязательно отключается (- целые 0.5% мощности!), выполняется задержка, после чего производится измерение напряжений с термопары, термодатчика и опорного напряжения с TL431. Далее все это по формулам и коэффициентам (частично задаваемым в nvram) пересчитывается в температуру.
Здесь я позволю себе маленькое отступление. Зачем в такой конфигурации термодатчик - не вполне понятно. При правильной организации, он должен давать поправку температуры на холодном спае термопары. Но в этой конструкции он измеряет температуру платы, не имеющую никакого отношения к требуемой. Его либо нужно переносить в ручку, как можно ближе к картриджу T12 (и еще вопрос - в каком месте картридже находится холодный спай термопары), либо вовсе выкинуть. Возможно, я чего-то не понимаю, но похоже, что китайские разработчики тупо передрали схему компенсации с какого-то другого устройства, совершенно не понимая принципов работы.

После измерения температуры вычисляется разница между заданной и текущей температурой. В зависимости от того, большая она или маленькая работают две формулы - одна большая, с кучей коэффициентов и накоплением дельты (желающие могут почитать про построение ПИД-регуляторов), вторая проще - при больших отличиях нужно либо греть максимально, либо полностью отключить (в зависимости от знака). Переменная ШИМ может иметь значение от 0 (отключено) до 200 (полностью включено) - по количеству прерываний в цикле управления.
Когда я только включил устройство (и еще не залез в прошивку), меня заинтересовал один момент - не было дрожания на ± градус. Т.е. температура либо держится стабильно, либо дергается сразу на 5-10 градусов. После анализа прошивки выяснилось, что дрожит оно по всей видимости всегда. Но при отклонении от заданной температуры менее чем на 2 градуса прошивка показывает не измеренную, а заданную температуру. Это ни хорошо и не плохо - дрожащий младший разряд тоже сильно раздражает - просто нужно иметь в виду.

Завершая разговор о прошивке хочу отметить еще несколько моментов.
1) С термопарами я не работал уже лет 20. Может за это время они стали линейнее;), но раньше для сколько-нибудь точных измерений и при наличии возможности, всегда вводилась функция корректировки нелинейности - формулой или таблицей. Здесь этого нет от слова совсем. Можно настроить только смещение нуля и угол наклона характеристики. Может во всех картриджах используются высоколинейные термопары. Либо индивидуальный разброс в разных картриджах больше, чем возможная групповая нелинейность. Хотелось бы надеяться на первый вариант, но опыт намекает на второй…
2) По непонятной для меня причине, внутри прошивки температура задается числом с фиксированной точкой и разрешением в 0.1 градус. Совершенно очевидно, что в силу предыдущего замечания, 10-битного АЦП, неверной поправки холодного конца, неэкранированного провода и т.п. реальная точность измерений и 1 градус никак не составит. Т.е. похоже, что опять содрано с какого-то другого устройства. А сложность вычислений чуть выросла (неоднократно приходится делить/умножать на десять 16-разрядные числа).
3) На плате имеются контактные площадки Rx/TX/gnd/+5v. Насколько я понял, у китайцев были специальные прошивки и специальная китайская программа, позволяющая напрямую получать данные со всех трех каналов АЦП и настраивать параметры ПИД. Но в стандартной прошивке ничего этого нет, выводы предназначены исключительно для заливки прошивки в контроллер. Программа для заливки доступна, работает через простой последовательный порт, только TTL-уровни нужны.
4) Точки на индикаторе имеют свой функционал - левая индицирует режим 5, средняя - наличие вибрации, правая - тип выводимой температуры (выставленная или текущая).
5) Для записи выбранной температуры отведено 512 байт. Сама запись сделана грамотно - каждое изменение пишется в следующую свободную ячейку. Как только достигнут конец - блок полностью стирается, а запись производится в первую ячейку. При включении берется самое дальнее записанное значение. Это позволяет увеличить ресурс в пару сотен раз.
Владелец, помни - вращая ручку настройки температуры, ты тратишь невосполнимый ресурс встроенного nvram!
6) Для остальных настроек используется второй блок nvram

С прошивкой все, если возникнут дополнительные вопросы - задавайте.

Мощность

Одна из важных характеристик паяльника - максимальная мощность нагревателя. Оценить ее можно следующим образом:
1) Имеем напряжение 24В
2) Имеем жало Т12. Измеренное мной сопротивление жала в холодном состоянии составляет чуть более 8 Ом. У меня получилось 8.4, но я не берусь утверждать, что погрешность измерения менее 0.1 Ома. Предположим, что реальное сопротивление никак не менее 8.3 Ома.
3) Сопротивление ключа STD10PF06 в открытом состоянии (по даташиту) - не более 0.2 Ома, типовое - 0.18
4) Дополнительно нужно учесть сопротивление 3х метров провода (2x1.5) и разъема.

Итоговое сопротивление цепи в холодном состоянии составляет не менее 8.7 Ома, что дает предельный ток в 2.76А. С учетом падения на ключе, проводах и разъеме, напряжением на самом нагревателе будет около 23В, что даст мощность порядка 64 Вт. Причем это предельная мощность в холодном состоянии и без учета скважности. Но не стоит особо расстраиваться - 64 Вт это весьма много. А учитывая конструкцию жала - достаточно для большинства случаев. Проверяя работоспособность в режиме постоянного нагрева, я помещал кончик жала в кружку с водой - вода вокруг жала кипела и пАрила весьма бодро.

Но вот попытка экономии с использованием БП от ноутбука имеет очень сомнительную эффективность - внешне незначительное снижение напряжения, приводит к потере трети мощности: вместо 64 Вт останется порядка 40. Стоит ли этого экономия $6?

Если наоборот, попытаться выжать из паяльника заявленные 70Вт, есть два пути:
1) Немного увеличить напряжение БП. Достаточно увеличить всего на 1В.
2) Уменьшить сопротивление цепи.
Почти единственный вариант, как немного уменьшить сопротивление цепи - заменить ключевой транзистор. К сожалению, практически все p-канальные транзисторы в используемом корпусе и на требуемое напряжение (на 30В я не рискнул бы ставить - запас будет минимален) имеют сходные Rdson. А так было бы вдвойне замечательно - заодно меньше бы грелась плата контроллера. Сейчас в режиме максимального разогрева на ключевом транзисторе выделяется около ватта.

Точность/стабильность поддержания температуры

Кроме мощности, не менее важна стабильность поддержания температуры. Причем лично для меня стабильность даже важнее точности, поскольку если значение на индикаторе можно и опытным путем подобрать - обычно я так и делаю (и не очень важно, что при выставке 300 градусов реально на жале - 290), то вот нестабильность таким образом не побороть. Впрочем, по ощущениям, стабильность поддержания температуры на T12 заметно лучше, чем на жалах 900-й серии.

Что имеет смысл переделать в контроллере

1) Контроллер греется. Не фатально, но больше желаемого. Причем главным образом его греет даже не силовая часть, а стабилизатор на 5В. Измерения показали, что ток по 5В составляет порядка 30 мА. 19В падения при 30 мА дает примерно 0.6Вт постоянного нагрева. Из них на резисторе (120Ом) выделяется порядка 0.1Вт и еще 0.5Вт - на самом стабилизаторе. Потребление остальной схемы можно игнорировать - всего 0.15Вт, из которой заметная часть тратится на индикатор. Но плата маленькая и поставить step-down просто некуда - если только на отдельной платке.

2) Силовой ключ с большим (относительно большим!) сопротивлением. Применение ключа с сопротивлением 0.05 Ом сняло бы все проблемы его нагрева и добавило бы около ватта мощности нагревателю картриджа. Но корпус был бы уже не 2х миллиметровый dpak, а минимум на размер больше. Или вообще переделать управление на n-канал.

3) Перенос ntc в ручку. Но тогда имеет смысл перенести туда и микроконтроллер, и силовой ключ и опорное напряжение.

4) Расширение функциональности прошивки (несколько наборов параметров ПИД для разных жал и т.п.). Теоретически возможно, но лично мне проще (и дешевле!) заново слепить на каком-нибудь младшем stm32, чем утаптывать в существующую память.

В результате имеем замечательную ситуацию - переделывать можно много чего, но практически любая переделка требует выкинуть старую плату и сделать новую. Либо не трогать, к чему я и склоняюсь пока.

Заключение

Имеет ли смысл переходить на T12? Не знаю. Пока я работаю только с жалом T12-K. Для меня оно одно из самых универсальных - и полигон хорошо греет, и гребенку выводов эрзац-волной пропаять/отпаять можно, и отдельный вывод острым концом прогреть можно.
C другой стороны, имеющийся контроллер и отсутствие средств автоматической идентификации конкретного типа жала усложняет работу с T12. Ну что мешало Hakko засунуть какой-нибудь идентифицирующий резистор/диод/чип внутрь картриджа? Было бы идеально, если в контроллере имелось несколько слотов под индивидуальные настройки жал (хотя-бы штуки 4) и при смене жала он автоматом загружал нужные. А в существующей системе можно как максимум сделать ручной выбор жала. Прикидывая объем работ понимаешь, что овчинка не стоит выделки. Да и картриджи по стоимости соизмеримы с целой паяльной станцией (если не брать китай по $5). Да, разумеется можно экспериментально вывести таблицу поправок температур и приклеить табличку на крышку. Но с коэффициентами ПИД (от которых напрямую зависит стабильность) так не поступить. От жала к жалу они обязаны отличаться.

Если отбросить мысли-мечты, то выходит следующее:
1) Если паяльной станции нет, но хочется - лучше забыть про 900 и брать T12.
2) Если нужно дешево и точные режимы пайки не сильно нужны - лучше взять простой паяльник с регулировкой мощности.
3) Если паяльная станция на 900х уже есть, то достаточно T12-К - универсальность и портативность получилась на высоте.

В данной статье речь пойдет о том, какие шаги необходимо выполнить для создания минимального и удобного проекта под микроконтроллер серии STM32 в среде разработки IAR. Этот пост скорее напоминалка для меня самого дабы не забыть мелких нюансов IDE в ответственный момент. Ведь в любой момент я смогу просто зайти на эту страницу и скачать готовый стартап проект. Ну а Вам, дорогие читатели, самим решать, чего полезного можно почерпнуть из этого поста! Ну что ж, приступим?

Естественно, в первую очередь необходимо скачать и установить программу IAR. Дальше необходимо скачать полезную библиотеку от производителя процессора, которая называется STM32F10x_StdPeriph_Lib_V3.5.0 (версия в Вашем случае может отличаться). После этого, запускаем установленную среду разработки. Создаем новый проект Project->Create New Project…

Выбираем пустой проект


Получаем


Создаем желаемые условные разделения внутри проекта (с помощью команд Add->Add Group… )

Добавляем необходимые файлы


В результате дерево проекта должно выглядеть следующим образом

Переходим к настройке проекта. Выбираем процессор




Устанавливаем галочку в настройках для использования библиотеки CMSIS

Добавляем путя к библиотечным файлам, а также добавляем определения (Defines) в настройки препроцессора C/C++


Кроме этого есть возможным получать на выходе будущей сборки проекта выходные файлы разного формата. Одним из возможных форматов является обычный двоичных файл. Для его генерации нужно зайти в настройки проекта и установить их следующим образом

Ради приличия считаю должным, упомянуть о самой программе, которую мы собираемся скомпилировать. Что она должна делать? Это своего рода «Hello World» в мире встроенных систем. Иными словами — будем мигать светодиодом. Рассмотрим исходный код главного файла:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 #include "stm32f10x_gpio.h" #include "stm32f10x_rcc.h" #include "stm32f10x_flash.h" int main() { GPIO_InitTypeDef GPIO_InitStructure; /* HCLK = SYSCLK */ RCC_HCLKConfig(RCC_SYSCLK_Div1) ; RCC_PCLK2Config(RCC_HCLK_Div2) ; RCC_PCLK1Config(RCC_HCLK_Div4) ; /* Select HSI as system clock source */ RCC_SYSCLKConfig(RCC_SYSCLKSource_HSI) ; /* Wait till HSI is used as system clock source */ while (RCC_GetSYSCLKSource() != 0x00) { } FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable) ; FLASH_SetLatency(FLASH_Latency_0) ; // Enable peripherals clocks RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE) ; /* LED configuration */ /* Configure PD.05 as output push-pull */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOD, & GPIO_InitStructure) ; while (1) { GPIO_SetBits(GPIOD, GPIO_Pin_5) ; for (long i= 0 ; i< 200000 ; i++ ) ; GPIO_ResetBits(GPIOD, GPIO_Pin_5) ; for (long i= 0 ; i< 200000 ; i++ ) ; } }

Что тут творится? В первую очередь настраиваем систему тактирования микропроцессора и выбираем внутренний источник тактирования (HSI, 8 MHz). Дальше подаём тактирование на порт GPIOD, который «висит» на шине APB2. После, настраиваем 5-ый пин порта GPIOD на выход (к этому пину подключаем светодиод). Ну а дальше видим бесконечный цикл в котором и происходит поочерёдное включение и выключение светодиода. Между включением и выключением также добавлены циклы. Они выполняют роль задержки, дабы человеческий глаз успевал замечать мигание светодиода.

Теперь проект должен без особых проблем собраться по нажатии клавиши F7 . Нами была создана возможно первая прошивка для микропроцессора STM32F103. Поздравляю! На выходе получим желаемый двоичный файл. В одной из следующих статьей рассмотрим способ загрузки полученного бинарного файла, собственно в сам микропроцессор. Это сделать очень просто, если у Вас имеется в наличии переходник USB-UART.