Простой генератор звуковой частоты руками. Схемы простых генераторов низкой частоты. Простой звуковой генератор своими руками

Генераторы низкой частоты (ГНЧ) используют для получения незатухающих периодических колебаний электрического тока в диапазоне частот от долей Гц до десятков кГц. Такие генераторы, как правило, представляют собой усилители, охваченные положительной обратной связью (рис. 11.7,11.8) через фазосдви-гающие цепочки. Для осуществления этой связи и для возбуждения генератора необходимы следующие условия: сигнал с выхода усилителя должен поступать на вход со сдвигом по фазе 360 градусов (или кратном ему, т.е. О, 720, 1080 и т.д. градусов), а сам усилитель должен иметь некоторый запас коэффициента усиления, KycMIN. Поскольку условие оптимального сдвига фаз для возникновения генерации может выполняться только на одной частоте, именно на этой частоте и возбуждается усилитель с положительной обратной связью.

Для сдвига сигнала по фазе используют RC- и LC-цепи, кроме того, сам усилитель вносит в сигнал фазовый сдвиг. Для получения положительной обратной связи в генераторах (рис. 11.1, 11.7, 11.9) использован двойной Т-образный RC-мост; в генераторах (рис. 11.2, 11.8, 11.10) — мост Вина; в генераторах (рис. 11.3 — 11.6, 11.11 — 11.15) — фазосдвигающие RC-це-почки. В генераторах с RC-цепочками число звеньев может быть достаточно большим. На практике же для упрощения схемы число не превышает двух, трех.

Расчетные формулы и соотношения для определения основных характеристик RC-генераторов сигналов синусоидальной формы приведены в таблице 11.1. Для простоты расчета и упрощения подбора деталей использованы элементы с одинаковыми номиналами. Для вычисления частоты генерации (в Гц) в формулы подставляют значения сопротивлений, выраженные в Омах, емкостей — в Фарадах. Для примера, определим частоту генерации RC-генератора с использованием трехзвенной RC-це-пи положительной обратной связи (рис. 11.5). При R=8,2 кОм; С=5100 пФ (5,1х1СГ9 Ф) рабочая частота генератора будет равна 9326 Гц.

Таблица 11.1

Для того чтобы соотношение резистивно-емкостных элементов генераторов соответствовало расчетным значениям, крайне желательно, чтобы входные и выходные цепи усилителя, охваченного петлей положительной обратной связи, не шунтировали эти элементы, не влияли на их величину. В этой связи для построения генераторных схем целесообразно использовать каскады усиления, имеющие высокое входное и низкое выходное сопротивления.

На рис. 11.7, 11.9 приведены «теоретическая» и несложная практическая схемы генераторов с использованием двойного Т-моста в цепи положительной обратной связи.

Генераторы с мостом Вина показаны на рис. 11.8, 11.10 [Р 1/88-34]. В качестве УНЧ использован двухкаскадный усилитель. Амплитуду выходного сигнала можно регулировать потенциометром R6. Если требуется создать генератор с мостом Вина, перестраиваемый по частоте, последовательно с резисторами R1, R2 (рис. 11.2, 11.8) включают сдвоенный потенциометр. Частотой такого генератора можно также управлять, заменив конденсаторы С1 и С2 (рис. 11.2, 11.8) на сдвоенный конденсатор переменной емкости. Поскольку максимальная емкость такого конденсатора редко превышает 500 пФ, удается перестраивать частоту генерации только в области достаточно высоких частот (десятки, сотни кГц). Стабильность частоты генерации в этом диапазоне невысока.

На практике для изменения частоты генерации подобных устройств часто используют переключаемые наборы конденсаторов или резисторов, а во входных цепях применяют полевые транзисторы. Во всех приводимых схемах отсутствуют элементы стабилизации выходного напряжения (для упрощения), хотя для генераторов, работающих на одной частоте или в узком диапазоне ее перестройки, их использование не обязательно.

Схемы генераторов синусоидальных сигналов с использованием трехзвенных фазосдвигающих RC-цепочек (рис. 11.3)

показаны на рис. 11.11, 11.12. Генератор (рис. 11.11) работает на частоте 400 Гц [Р 4/80-43]. Каждый из элементов трехзвен-ной фазосдвигающей RC-цепочки вносит фазовый сдвиг на 60 градусов, при четырехзвенной — 45 градусов. Однокаскадный усилитель (рис. 11.12), выполненный по схеме с общим эмиттером, вносит необходимый для возникновения генерации фазовый сдвиг на 180 градусов. Заметим, что генератор по схеме на рис. 11.12 работоспособен при использовании транзистора с высоким коэффициентом передачи по току (обычно свыше 45...60). При значительном снижении напряжения питания и неоптимальном выборе элементов для задания режима транзистора по постоянному току генерация сорвется.

Звуковые генераторы (рис. 11.13 — 11.15) близки по построению к генераторам с фазосдвигающими RC-цепочками [Рл 10/96-27]. Однако за счет использования индуктивности (телефонный капсюль ТК-67 или ТМ-2В) вместо одного из ре-зистивных элементов фазосдвигающей цепочки, они работают с меньшим числом элементов и в большем диапазоне изменения напряжения питания.

Так, звуковой генератор (рис. 11.13) работоспособен при изменении напряжения питания в пределах 1...15 В (потребляемый ток 2...60 мА). При этом частота генерации изменяется от 1 кГц (ипит=1,5 В) до 1,3 кГц при 15 В.

Звуковой индикатор с внешним управлением (рис. 11.14) также работает при 1)пит=1...15 В; включение/выключение генератора производится подачей на его вход логических уровней единицы/нуля, которые также должны быть в пределах 1...15 В.

Звуковой генератор может быть выполнен и по другой схеме (рис. 11.15). Частота его генерации меняется от 740 Гц (ток потребления 1,2 мА, напряжение питания 1,5 В) до 3,3 кГц (6,2 мА и 15 В). Более стабильна частота генерации при изменении напряжения питания в пределах 3...11 В — она составляет 1,7 кГц± 1%. Фактически этот генератор выполнен уже не на RC-, а на LC-эле-ментах, причем, в качестве индуктивности используется обмотка телефонного капсюля.

Низкочастотный генератор синусоидальных колебаний (рис. 11.16) собран по характерной для LC-генераторов схеме «емкостной трехточки». Отличие заключается в том, что в качестве индуктивности использована катушка телефонного капсюля, а резонансная частота находится в диапазоне звуковых колебаний за счет подбора емкостных элементов схемы.

Другой низкочастотный LC-генератор, выполненный по каскодной схеме, показан на рис. 11.17 [Р 1/88-51]. В качестве индуктивности можно воспользоваться универсальной или стирающей головками от магнитофонов, обмотками дросселей или трансформаторов.

RC-генератор (рис. 11.18) реализован на полевых транзисторах [Рл 10/96-27]. Подобная схема используется обычно при построении высокостабильных LC-генераторов. Генерация возникает уже при напряжении питания, превышающем 1 В. При изменении напряжения с 2 до 10 6 частота генерации понижается с 1,1 кГц до 660 Гц, а потребляемый ток увеличивается, соответственно, с 4 до 11 мА. Импульсы частотой от единиц Гц до 70 кГц и выше могут быть получены изменением емкости конденсатора С1 (от 150 пФ до 10 мкФ) и сопротивления резистора R2.

Представленные выше звуковые генераторы могут быть использованы в качестве экономичных индикаторов состояния (включено/выключено) узлов и блоков радиоэлектронной аппаратуры, в частности, светоизлучающих диодов, для замены или дублирования световой индикации, для аварийной и тревожной индикации и т.д.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Такое устройство будет очень полезно при испытаниях звуковых цепей усилителей ресиверов, телевизоров и другой промышленной и самодельной аппаратуры. Схема генератора приводится по книге В. Г. Борисова «Юный радиолюбитель» (с 145-146 в 8-м издании), с незначительными изменениями.

Схема генератора ЗЧ

Генератор собран на микросхеме К155ЛА3 (можно использовать К555ЛА3), которая представляет собой 4 элемента 2И-НЕ. Непосредственно генератор образуют последовательно соединенные логические элементы DD1.1, DD1.2, DD1.3, включенные инверторами. Конденсатор C1, емкостью 0,47 мкФ, создает положительную обратную связь между выходом DD1.2 и входом DD1.1. В принципе, сигнал можно снимать с выхода DD1.3, элемент DD1.4 просто их инвертирует. Частоту импульсов можно менять резистором переменным R1. Резистор R2 служит регулятором уровня выходного сигнала. Сопротивление резистора R1 680 Ом, R2 10 кОм, переменные резисторы могут быть любого типа. При указанных в схеме параметрах радиодеталей, частоту импульсов можно менять в пределах 500 - 5000 Гц . Диод VD1 служит для защиты от подачи питания неправильной полярности, в качестве него подойдет любой маломощный диод, например Д220. Схема смонтирована на небольшой макетной плате. Но благодаря малому количеству деталей можно выполнить схему навесным монтажом.

Генератор в сборе

Штатное напряжение питания микросхем К155 и К555 составляет 5 В, но генератор работоспособен при питании схемы от «квадратной» батареи напряжением 4,5 В (батарея типа 3336 по старой номенклатуре), падение напряжения на диоде VD1 не влияет на работоспособность устройства. Устройство можно использовать для звуковой частоты.

В радиолюбительской практике часто возникает необходимости использовать генератор синусоидальных колебаний. Применения ему можно найти самые разнообразные. Рассмотрим как создать генератор синусоидального сигнала на мосту Вина со стабильной амплитудой и частотой.

В статье описывается разработка схемы генератора синусоидального сигнала. Сгенерировать нужную частоту можно и программно:

Наиболее удобным, с точки зрения сборки и наладки, вариантом генератора синусоидального сигнала является генератор, построенный на мосту Вина, на современном Операционном Усилителе (ОУ).

Мост Вина

Сам по себе мост Вина является полосовым фильтром, состоящим из двух . Он выделяет центральную частоту и подавляет остальные частоты.

Мост придумал, Макс Вин еще в 1891 году. На принципиальной схеме, сам мост Вина обычно изображается следующим образом:

Картинка позаимствована у Википедии

Мост Вина обладает отношением выходного напряжения ко входному b=1/3 . Это важный момент, потому что этот коэффициент определяет условия стабильной генерации. Но об этом чуть позже

Как рассчитать частоту

На мосту Вина часто строят автогенераторы и измерители индуктивности. Чтобы не усложнять себе жизнь обычно используют R1=R2=R и C1=C2=C . Благодаря этому можно упростить формулу. Основная частота моста рассчитывается из соотношения:

f=1/2πRC

Практически любой фильтр можно рассматривать как делитель напряжения, зависящий от частоты. Поэтому при выборе номиналов резистора и конденсатора желательно, чтобы на резонансной частоте комплексное сопротивление конденсатора (Z), было равно, или хотя бы одного порядка с сопротивлением резистора.

Zc=1/ωC=1/2πνC

где ω (омега) — циклическая частота, ν (ню) — линейная частота, ω=2πν

Мост Вина и операционный усилитель

Сам по себе мост Вина не является генератором сигнала. Для возникновения генерации его следует разместить в цепи положительной обратной связи операционного усилителя. Такой автогенератор можно построить и на транзисторе. Но использование ОУ явно упростит жизнь и даст лучшие характеристики.


Коэффициент усиления на троечку

Мост Вина имеет коэффициент пропускания b=1/3 . Поэтому условием генерации является то, что ОУ должен обеспечивать коэффициент усиления равный трем. В таком случает произведение коэффициентов пропускания моста Вина и усиления ОУ даст 1. И будет происходить стабильная генерация заданной частоты.

Если бы мир был идеальным, то задав резисторами в цепи отрицательной обратной связи, нужный коэфф усиления, мы бы получили готовый генератор.


Это неинвертирующий усилитель и его коэффициент усиления определяется соотношением: K=1+R2/R1

Но увы, мир не идеален. … На практике оказывается, что для запуска генерации необходимо, чтобы в самый начальный момент коэфф. усиления был немного больше 3-х, а далее для стабильной генерации он поддерживался равным 3.

Если коэффициент усиления будет меньше 3, то генератор заглохнет, если больше — то сигнал, достигнув напряжения питания, начнет искажаться, и наступит насыщение.

При насыщении, на выходе будет поддерживаться напряжение, близкое к одному из напряжений питания. И будут происходить случайные хаотичные переключения между напряжениями питания.


Поэтому, строя генератор на мосте Вина, прибегают к использованию нелинейного элемента в цепи отрицательной обратной связи, регулирующего коэффициент усиления. В таком случае генератор будет сам себя уравновешивать и поддерживать генерацию на одинаковом уровне.

Стабилизация амплитуды на лампе накаливания

В самом классическом варианте генератора на мосте Вина на ОУ, применяется миниатюрная низковольтная лампа накаливания, которая устанавливается вместо резистора.


При включении такого генератора, в первый момент, спираль лампы холодная и ее сопротивление мало. Это способствует запуску генератора (K>3). Затем, по мере нагрева, сопротивление спирали увеличивается, а коэффициент усиления снижается, пока не дойдет до равновесия (K=3).

Цепь положительной обратной связи, в которую был помещен мост Вина, остается без изменений. Общая принципиальная схема генератора выглядит следующим образом:


Элементы положительной обратной связи ОУ определяют частоту генерации. А элементы отрицательной обратной связи — усиление.

Идея использования лампочки, в качестве управляющего элемента очень интересна и используется по сей день. Но у лампочки, увы, есть ряд недостатков:

  • требуется подбор лампочки и токоограничивающего резистора R*.
  • при регулярном использовании генератора, срок жизни лампочки обычно ограничивается несколькими месяцами
  • управляющие свойства лампочки зависят от температуры в комнате.

Другим интересным вариантом является применение терморезистора с прямым подогревом. По сути, идея та же, только вместо спирали лампочки используется терморезистор. Проблема в том, что его нужно для начала найти и опять таки подобрать его и токоограничиващие резисторы.

Стабилизация амплитуды на светодиодах

Эффективным методом стабилизации амплитуды выходного напряжения генератора синусоидальных сигналов является применение в цепи отрицательной обратной связи ОУ светодиодов (VD1 и VD2 ).

Основной коэффициент усиления задается резисторами R3 и R4 . Остальные же элементы (R5 , R6 и светодиоды) регулируют коэффициент усиления в небольшом диапазоне, поддерживая генерацию стабильной. Резистором R5 можно регулировать величину выходного напряжения в интервале примерное 5-10 вольт.

В дополнительной цепи ОС желательно использовать низкоомные резисторы (R5 и R6 ). Это позволит пропускать значительный ток (до 5мА) через светодиоды и они будут находиться в оптимальном режиме. Даже будут немного светиться:-)

На показанной выше схеме, элементы моста Вина рассчитаны для генерации на частоте 400 Гц, однако они могут быть легко пересчитаны для любой другой частоты по формулам, представленным в начале статьи.

Качество генерации и применяемых элементов

Важно, чтобы операционный усилитель мог обеспечить необходимый для генерации ток и обладал достаточной полосой пропускания по частоте. Использование в качестве ОУ народных TL062 и TL072 дало очень печальные результаты на частоте генерации 100кГц. Форму сигнала было трудно назвать синусоидальной, скорее это был треугольный сигнал. Использование TDA 2320 дало еще более худший результат.

А вот NE5532 показа себя с отличной стороны, выдав на выходе сигнал очень похожий на синусоидальный. LM833 так же справилась с задачей на отлично. Так что именно NE5532 и LM833 рекомендуются к использованию как доступные и распространенные качественные ОУ. Хотя с понижением частоты гораздо лучше себя будут чувствовать и остальные ОУ.

Точность частоты генерации напрямую зависит от точности элементов частотозависимой цепи. И в данном случае важно не только соответствие номинала элемента надписи на нем. Более точные детали имеют лучшую стабильность величин при изменении температуры.

В авторском варианте были применены резистор типа С2-13 ±0.5% и слюдяные конденсаторы точностью ±2%. Применение резисторов указанного типа обусловлено малой зависимостью их сопротивления от температуры. Слюдяные конденсаторы так же мало зависят от температуры и имеют низкий ТКЕ.

Минусы светодиодов

На светодиодах стоит остановиться отдельно. Их использование в схеме синус генератора вызвано величиной падения напряжения, которое обычно лежит в интервале 1.2-1.5 вольта. Это позволяет получать достаточно высокое значение выходного напряжения.


После реализации схемы, на макетной плате, выяснилось, что из-за разброса параметров светодиодов, фронты синусоиды на выходе генератора не симметричны. Это немного заметно даже на приведенной выше фотографии. Помимо этого присутствовали небольшие искажения формы генерируемого синуса, вызванные недостаточной скоростью работы светодиодов для частоты генерации 100 кГц.

Диоды 4148 вместо светодиодов

Светодиоды были заменены на всеми любимые диоды 4148. Это доступные быстродействующие сигнальные диоды со скоростью переключения менее 4 нс. Схема при этом осталась полноценно работоспособной, от описанных выше проблем не осталось и следа, а синусоида приобрела идеальный вид.

На следующей схеме элементы моста вина рассчитаны на частоту генерации 100 кГц. Так же переменный резистор R5 был заменен на постоянные, но об этом позже.


В отличие от светодиодов, падение напряжения на p-n переходе обычных диодов составляет 0.6÷0.7 В, поэтому величина выходного напряжения генератора составила около 2.5 В. Для увеличения выходного напряжения возможно включение нескольких диодов последовательно, вместо одного, например вот так:


Однако увеличение количества нелинейных элементов сделает генератор более зависимым от внешней температуры. По этой причине было решено отказаться от такого подхода и использовать по одному диоду.

Замена переменного резистора постоянными

Теперь о подстроечном резисторе. Изначально в качестве резистора R5 был применен многооборотный подстроечный резистор на 470 Ом. Он позволял точно регулировать величину выходного напряжения.

При построении любого генератора крайне желательно наличие осциллографа. Переменный резистор R5 напрямую влияет на генерацию — как на амлитуду так и на стабильность.

Для представленной схемы генерация стабильна лишь в небольшом интервале сопротивлений этого резистора. Если соотношение сопротивлений больше требуемого — начинается клиппинг, т.е. синусоида будет подрезаться сверху и снизу. Если меньше — форма синусоиды начинает искажаться, а при дальнейшем уменьшении генерация глохнет.

Так же это зависит от используемого напряжения питания. Описываемая схема исходно была собрана на ОУ LM833 с питанием ±9В. Затем, без изменения схемы, ОУ были заменены на AD8616, а напряжение питания на ±2,5В (максимум для этих ОУ). В итоге такой замены синусоида на выходе подрезалась. Подбор резисторов дал значения 210 и 165 ом, вместо 150 и 330 соответственно.

Как подобрать резисторы «на глаз»

В принципе можно оставить и подстроечный резистор. Все зависит от требуемой точности и генерируемой частоты синусоидального сигнала.

Для самостоятельного подбора следует, в первую очередь, установить подстроечный резистор номиналом 200-500 Ом. Подав выходной сигнал генератора на осциллограф и вращая подстроечный резистор дойти до момента когда начнется ограничение.

Затем понижая амплитуду найти положение, в котором форма синусоиды будет наилучшей.Теперь можно выпаять подстроечник, замерить получившиеся величины сопротивлений и впаять максимально близкие значения.

Если вам требуется генератор синусоидального сигнала звуковой частоты, то можно обойтись и без осциллографа. Для этого, опять таки, лучше дойти до момента когда сигнал, на слух, начнет искажаться из-за подрезания, а затем убавить амплитуду. Убавлять следует до тех пор пока искажения не пропадут, а затем еще немного. Это необходимо т.к. на слух не всегда можно уловить искажения и в 10%.

Дополнительное усиление

Генератор синуса был собран на сдвоенном ОУ, и половина микросхемы осталась висеть в воздухе. Поэтому логично задействовать ее под регулируемый усилитель напряжения. Это позволило перенести переменный резистор из дополнительной цепи ОС генератора в каскад усилителя напряжения для регулировки выходного напряжения.

Применение дополнительного усилительного каскада гарантирует лучшее согласование выхода генератора с нагрузкой. Он был построен по классической схеме неинвертирующего усилителя.


Указанные номиналы позволяют изменять коэффициент усиления от 2 до 5. При необходимости номиналы можно пересчитать под требуемую задачу. Коэффициент усиления каскада задается соотношением:

K=1+R2/R1

Резистор R1 представляет из себя сумму последовательно включенных переменного и постоянного резисторов. Постоянный резистор нужен, чтобы при минимальном положении ручки переменного резистора коэффициент усиления не ушел в бесконечность.

Как умощнить выход

Генератор предполагался для работы на низкоомную нагрузку в несколько Ом. Разумеется ни один маломощный ОУ не сможет выдать необходимый ток.

Для умощнения, на выходе генератора разместился повторитель на TDA2030. Все вкусности такого применения этой микросхемы описаны в статье .

А вот так собственно выглядит схема всего синусоидального генератора с усилителем напряжения и повторителем на выходе:


Генератор синуса на мосту Вина можно собрать и на самой TDA2030 в качестве ОУ. Все зависит от требуемой точности и выбранной частоты генерации.

Если нет особых требований к качеству генерации и требуемая частота не превышает 80-100 кГц, но при этом предполагается работа на низкоомную нагрузку, то этот вариант вам идеально подойдет.

Заключение

Генератор на мосту Вина — это не единственный способ генерации синусоиды. Если вы нуждаетесь в высокоточной стабилизации частоты то лучше смотреть в сторону генераторов с кварцевым резонатором.

Однако, описанная схема, подойдет для подавляющего большинства случаев, когда требуется получение стабильного, как по частоте так и по амплитуде, синусоидального сигнала.

Генерация это хорошо, а как точно измерить величину переменного напряжения высокой частоты? Для это отлично подходит схема которая называется .

Материал подготовлен исключительно для сайта

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор. Часть 1.

На этом занятии Школы начинающего радиолюбителя мы с вами продолжим наполнять нашу радиолабораторию необходимым измерительным инструментом. Сегодня мы начнем собирать функциональный генератор . Данный прибор необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, различных фильтров и множества других устройств. К примеру, после того как мы соберем этот генератор, мы сделаем маленький перерыв в ходе которого изготовим простое светомузыкальное устройство. Так вот, что бы правильно настроить частотные фильтры схемы, нам как раз очень пригодится этот прибор.

Почему данный прибор называется функциональный генератор, а не просто генератор (генератор низкой частоты, генератор высокой частоты). Прибор, который мы изготовим, генерирует на своих выходах сразу три различных сигнала: синусоидальный, прямоугольный и пилообразный. За основу конструкции мы возьмем схему С. Андреева, которая опубликована на сайте в разделе: Схемы – Генераторы .

Для начала нам необходимо внимательно изучить схему, понять принцип ее работы и собрать необходимые детали. Благодаря применению в схеме специализированной микросхемы ICL8038 которая как раз предназначена для построения функционального генератора, конструкция получается довольно-таки простой.

Конечно, цена изделия зависит и от производителя, и от возможностей магазина, и от многих других факторов, но в данном случае мы преследуем одну цель: найти необходимую радиодеталь, которая была бы приемлемого качества и главное – по карману. Вы наверное заметили, что цена микросхемы сильно зависит от ее маркировки (АС, ВС и СС). Чем дешевле микросхема, тем хуже ее характеристики. Я бы порекомендовал остановить свой выбор на микросхеме “ВС”. У нее характеристики не очень сильно отличаются от “АС”, но намного лучше чем у “СС”. Но в принципе, конечно, пойдет и эта микросхема.

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго вам дня уважаемые радиолюбители! Сегодня мы продолжим собирать наш функциональный генератор . Чтобы вам не скакать по страницам сайта, еще раз выкладываю принципиальную схему функционального генератора , сборкой которого мы и занимаемся:

А так же выкладываю даташит (техническое описание) микросхем ICL8038 и КР140УД806:

(151.5 KiB, 6,062 hits)

(130.7 KiB, 3,494 hits)

Я уже собрал необходимые детали для сборки генератора (часть у меня была – постоянные сопротивления и полярные конденсаторы, остальные куплены в магазине радиодеталей):

Самыми дорогими деталями оказались микросхема ICL8038 – 145 рублей и переключатели на 5 и 3 положения – 150 рублей. В общей сложности на эту схему придется потратить около 500 рублей. Как видно на фотографии, переключатель на пять положений – двухсекционный (односекционного не было), но это не страшно, лучше больше, чем меньше, тем более, что вторая секция нам возможно пригодится. Кстати, эти переключатели абсолютно одинаковые, а количество положений определяется специальным стопором, который можно установить на нужное число положений самому. На фотографии у меня два выходных разъема, хотя по идее их должно быть три: общий, 1:1 и 1:10 . Но можно поставить небольшой переключатель (один выход, два входа) и коммутировать нужный выход на один разъем. Кроме того хочу обратить внимание на постоянный резистор R6. Номинала в 7,72 МОм в линейке мегаомных сопротивлений нет, ближайший номинал – 7,5 МОм. Для того, чтобы получить нужный номинал придется использовать второй резистор на 220 кОм, соединив их последовательно.

Хочу обратить ваше внимание также на то, что сборкой и наладкой этой схемы собирать функциональный генератор мы не закончим. Для комфортной работы с генератором мы должны знать какая частота генерируется в данный момент работы, или нам бывает необходимо установить определенную частоту. Чтобы не использовать для этих целей дополнительные приборы, мы оснастим наш генератор простым частотомером.

Во второй части занятия мы с вами изучим очередной способ изготовления печатных плат – методом ЛУТ (лазерно-утюжный). Саму плату мы будем создавать в популярной радиолюбительской программе для создания печатных плат SPRINT LAYOUT .

Как работать с этой программой, я вам пока объяснять не буду. На следующем занятии, в видео файле, покажу как создать нашу печатную плату в этой программе, а также весь процесс изготовления платы методом ЛУТ.

Явное преимущество по простоте и стабильности в работе показал генератор по предложенной в схеме (на рис. 1 она упрощена). Там лампа накаливания, действующая как бареттер, подключена к выходу усилителя тока на транзисторе, чтобы снизить нагрузку на цепь генератора. Такой же усилитель предусмотрен и в схеме . Но оказалось, что при выходном напряжении 1 В исключение усилителя на параметрах генератора не сказывается: нить лампы почти не нагревается, а амплитуда выходного сигнала при перестройке частоты практически не изменяется. Возможно, при выходном напряжении 4 В усилитель полезен, но для задающего генератора (ЗГ) необходимости в нем нет. Кроме усилителей на транзисторах, при проверке на макете вместо обычных ОУ были опробованы и микросхемы SSM2135 и SSM2275, обеспечивающие значительно больший выходной ток. В этом случае лампа может разогреваться без всякого дополнительного усилителя, но тоже никакой разницы в стабильности амплитуды и уровне искажений не замечено. В схеме генератора из наименьшие искажения сигнала достигаются при определенном оптимальном выходном напряжении, выбираемом с помощью подстроечного резистора. В генераторе по схеме, показанной на рис. 1 в , никаких регуляторов не предусмотрено, а амплитуду выходного сигнала можно изменить подбором резистора R3. Для получения напряжения 1 В потребовался резистор R3 сопротивлением около 13 кОм.

Увеличение амплитуды одновременно позволяет повысить верхнюю граничную частоту генерации при тех же элементах. На мой взгляд, необходимость в использовании частоты выше 100 кГц в практике занятий звукотехни-кой возникает крайне редко. При экспериментах обнаружилось, что коэффициент гармоник и выходное напряжение несколько изменяются при замене лампы стабилизации. При измерениях в макете ЗГ использованы микролампы оптронов. На частоте 1 кГц результаты получены следующие: для ОЭП-2 Кг равен 0,11 и 0,068%; для ОЭП,23 и 0,095%; для ОЭП,1 и 0,12% (по два экземпляра). Для нескольких ламп других типов Кг оказался равным 0,17, 0,081, 0,2 и 0,077%. Измерения показали, что разогрев нити чрезвычайно мал (сопротивление фоторезистора оптрона практически не изменяется), хотя стабилизация амплитуды ЗГ очень эффективна. Не хуже стабилизируют амплитуду выходного сигнала и полевые транзисторы, но искажения получаются больше.

Нужно отметить, что на самой высокой частоте (100 кГц) в исследуемом варианте ЗГ могут работать не все ОУ. Легко обеспечивают генерацию на этой частоте сдвоенные ОУ ОР275 или NE5532, а микросхема SSM2135 - на частотах не выше 92 кГц.

Представленных здесь сведений по схемам вполне достаточно для изготовления измерительного генератора, но за более подробной информацией и методикой расчета можно обратиться к статьям .

Для получения максимального выходного напряжения около 10 В эфф. необходим выходной усилитель, повышающий напряжение задающего генератора в 10 раз. В полноценном приборе нужно контролировать частоту и напряжение выходного сигнала. Проще всего снабдить генератор простыми частотомером и вольтметром. Эти совершенно независимые устройства размещены на отдельных платах, что облегчало экспериментальную проверку всех узлов и устраняло их взаимовлияние.

Полная схема измерительного генератора с частотомером и вольтметром показана на рис. 2.

На одной плате собран задающий генератор (DA1), на второй - частотомер (DA3), на третьей - выходной усилитель и вольтметр (DA2). Получается, что весь прибор, кроме блока питания , собран всего на трех микросхемах, поэтому монтаж легко выполнить на отрезках макетной печатной платы.

Основные технические параметры

Частотные интервалы ЗГ и частотомера, Гц, в поддиапазоне
I......................7...110
II....................89...1220
III.................828...11370
IV...............8340...114500
Напряжение на выходе генератора, В..................0...10
Затухание аттенюатора, дБ. .10/20/30/40
Выходное сопротивление,
Ом.....................100/160
Коэффициент гармоник ЗГ, %, в поддиапазоне
I (выше 30 Гц) .............0,16
II......................0,105
III......................0,065
IV.......................0,09

Для каждого из поддиапазонов указано среднее значение коэффициента гармоник, которое получено без всякого подбора элементов (кроме выбора лампы накаливания) при измерениях сигнала на выходе задающего генератора. При перестройке частоты амплитуда сигнала изменялась очень мало.

Задающий генератор на микросхеме DA2 работает в четырех поддиапазонах с небольшим перекрытием по краям. Перестройка частоты осуществляется с помощью сдвоенного переменного резистора R17. Для перестройки можно использовать и одиночный резистор, но перекрытие в поддиапазоне окажется значительно меньше. При наличии встроенного частотомера нет необходимости точно подгонять границы диапазонов или обеспечивать линейное изменение частоты, применяя переменные резисторы группы Б с нелинейной характеристикой регулирования. Пользуясь шкалой частотомера, требуемую частоту сигнала генератора можно выставить без труда.

Простые аналоговые частотомеры обычно собирают на микросхемах ТТЛ, так как на них проще обеспечить измерение высоких частот. Поэтому некоторые неожиданности возникли при подключении такого частотомера, который вносил заметные помехи: на частоте 100 кГц ИНИ показал увеличение коэффициента гармоник до 0,7 %. В этом приборе использована микросхема КМОП К561ЛА7 (DD1). Потребляемый ток и помехи от частотомера получаются значительно меньше. Чтобы свести эти помехи к минимуму, сопротивление разделительного резистора R1 нужно выбирать не менее 100 кОм, тогда на 100 кГц значение Кг не превышает 0,3 %. На других диапазонах практически подключение частотомера не сказывается. Чтобы еще больше снизить уровень помех от частотомера, на его входе установлен истоковый повторитель VT1 (КПЗОЗБ).

Принцип работы аналоговых частотомеров известен, а описание работы одновибратора можно найти в . Переключение поддиапазонов частотомера производится тем же переключателем SA1, который переключает частоту генератора. Если есть возможность подобрать конденсаторы С2, СЗ, С4 и С5, чтобы их емкости отличались ровно в 10 раз, то нет необходимости устанавливать подстроечные резисторы R6-R9.

Но можно использовать конденсаторы без подбора и подстроить показания в каждом поддиапазоне, пользуясь внешним частотомером (например, в ИНИ С6-11).

Еще одной неожиданностью стала заметная нелинейность шкалы используемых в приборе микроамперметров. Исходя из наличия и эстетических соображений в частотомере использован микроамперметр М4247 на 100 мкА, а в вольтметре - М4387 на 300 мкА. Оба типа приборов устанавливали в магнитофоны для контроля уровня записи сигнала, обычно они имеют одну шкалу, градуированную в децибелах. Понятно, что особая точность здесь не требовалась. Но с нанесенной настоящей шкалой показания измерительных приборов одного типа(!) существенно отличались либо в начале, либо в конце шкалы. Однако, располагая компьютером и принтером, новую шкалу можно сделать очень быстро. Сложность заключается в аккуратном вскрытии корпуса микроамперметра для установки шкалы, но это придется сделать, так как в вольтметре кроме обычной шкалы на 10 В нужно иметь шкалу на 3,16 В, а для всех занимающихся звукотехникой важно иметь возможность отсчета и в децибелах. Естественно, ничто не мешает использовать иные микроамперметры более высокого класса с готовыми шкалами.

Выходной каскад на ОУ DA5.2 (TL082 либо ТL072), увеличивающий амплитуду сигнала до 10 В, несколько увеличивает и нелинейные искажения. Этот каскад отличается от описанного в только тем, что дополнительно введен переключатель SA2 "хО,316" для изменения уровня выходного сигнала на 10 дБ (установка подстроечным резистором R30) и включенной параллельно ему кнопки SB1. При разомкнутых контактах переключателя этой кнопкой можно быстро получить скачкообразные изменения уровня на 10 дБ, что очень удобно при настройке авторегуляторов уровня и измерителей уровня. Использование предельного напряжения питания (+/-17,5 В) для усилителя позволило получить максимальную амплитуду выходного сигнала без ограничения не менее 10 В. В блоке питания для этой цели установлены стабилизаторы с регулируемым напряжением.

Несимметричное ограничение амплитуды можно выровнять подстройкой соответствующего напряжения питания. Максимальное напряжение 10 В на выходном разъеме Х1 устанавливают резистором R31. Затем размыкают переключатель SA2 и устанавливают подстроечным резистором R30 напряжение ровно на 10 дБ ниже, т. е. 3,16 В. Для этого выходной вольтметр имеет вторую шкалу. В делителе напряжения необходимо подобрать резисторы, чтобы обеспечить точное изменение амплитуды выходного сигнала ступенями по 20 дБ. Иногда достаточно просто поменять местами в делителе два резистора одного номинала. Достоинство такого аттенюатора - неизменное выходное сопротивление генератора при любом выходном напряжении (здесь 160 Ом).

Измерения показали, что при выходном напряжении 7,75 В на частоте 20 Гц генератор имеет Кг= 0,27 %; а при напряжении 77 мВ (-40 дБ) - К= 0,14%. В диапазоне II при Uвых = 7,75 В Кг<0,16%, в диапазоне III Kr = 0,08...0,09 %. В полосе частот 10...20 кГц при 11ВЫХ = 7,75 В Кг= 0,06 %, а на более высоких частотах возрастал до 0,32 % на частоте 100 кГц. Для обычной эксплуатации прибора это вряд ли имеет значение, хотя возможно подобрать для выходного усилителя другой ОУ. Увы, популярный в звукотех-нической аппаратуре ОУ NE5532 на высокой частоте превращает синусоиду амплитудой 10 В в "пилу".

Весь генератор потребляет от источника питания по цепи +17,5 В ток не более 14 мА, а по цепи -17,5 В - не более 18 мА, поэтому в качестве Т1 можно использовать любой маломощный трансформатор , обеспечивающий нужные напряжения (2x18 В).

Внешний вид прибора показан на фото рис. 3. Генератор размещен в пластмассовом корпусе размерами 200x60x170 мм; подобных корпусов в продаже достаточно много. В приборе использованы переключатели ПГ2-15-4П9НВ и тумблеры П1Т-1-1В, а также кнопка КМ1-1. Все оксидные конденсаторы, кроме С8, - на напряжение 25 В. Выходной разъем Х1 - JACK6.3. Насколько оправдано применение такого разъема, показывает опыт эксплуатации. Первые впечатления подтверждают, что иногда этот прибор удобнее ГЗ-102, а на низких частотах стабилизация амплитуды более устойчива, при этом никакого подбора деталей не требуется. После сборки на некоторое время нужен доступ к ИНИ, например С6-11, для настройки. Подстроечными резисторами можно достаточно быстро выставить показания приборов и проверить параметры генератора. Если окажется, что во всех поддиапазонах искажения велики, следует подобрать другую лампу (можно рекомендовать СМН6.3-20 или аналогичные). Для налаживания можно использовать и другие приборы - вольтметры, частотомеры.

Для создания шкалы приборов нужно нанести линейную шкалу и записать показания напряжения во всем диапазоне перестройки. Затем с помощью ПК нужно изготовить новую шкалу с учетом измеренных погрешностей и распечатать ее с помощью принтера на фотобумаге. Говорить о точности здесь бессмысленно, поскольку она зависит от правильности показаний используемых при калибровке приборов. Сейчас службы ремонта и контроля в основном упразднены; теперь предлагается использовать сертифицированные приборы. Но сертификация, хотя и увеличивает цену приборов, никак не влияет на точность их показаний. Так, при экспериментах с генераторами было использовано три И НИ С6-11, и их показания несколько различались.

ЛИТЕРАТУРА

1. Генератор 34 с малыми нелинейными искажениями. - Радио, 1984, № 7, с. 61.

2. Невструев Е. Генератор сигналов 34. - Радио, 1989, № 5, с. 67-69.

3. Петин Г. Применение гиратора в резонансных усилителях и генераторах. - Радио, 1996, № 11, с. 33, 34.

4. Бирюков устройства на МОП-интегральных микросхемах. - М.: Радио и связь, 1990.

5. Шило цифровые микросхемы. - М.: Радио и связь, 1987.

6. Синусоидальный генератор. - Радио, 1995, № 1,с.45.

Генератор НЧ на транзисторах, с перестройкой одним резистором.

http://nowradio. *****/generator%20NCH%20na%20tranzistorax%20s%20perestroykoy%20odnim%20rezistorom. htm

Генератор НЧ от 18 Гц до 30 Кгц. Диапазон разбит на четыре поддиапазона. Для стабилизации выходного напряжения применена система АРУ. Уровень выходного напряжения на нагрузке 15 кОм – не менее 0,5 в. Для дальнейшего использования генератора нужно применить выходной каскад с низким выходным сопротивлением. Например, эмиттерный повторитель с низкоомной нагрузкой. Основной частью генератора является трёхкаскадный усилитель на транзисторах Т4, Т5 и Т1 с коэффициентом передачи около 1. Усилитель охвачен отрицательной обратной связью, в цепь которой включены два фазовращающих каскада, собранных на транзисторах Т2, Т3. Каждый из них вносит фазовый сдвиг, изменяющийся от нуля до 180о при изменении частоты от нуля до бесконечности. Модуль коэффициента передачи этих каскадов не зависит от частоты и вносимого фазового сдвига и близок к 1. Таким образом, на одной из частот, являющейся квазирезонансной частотой генератора, суммарный фазовый сдвиг, вносимый фазовращателем, оказывается равным 180о и обратная связь становиться положительной. Если при этом коэффициент передачи достаточен, то устройство начинает генерировать на данной частоте. Построение данного генератора позволяет получить достаточно высокий коэффициент перекрытия по частоте на поддиапазонах (более 10), однако увеличивать его долее 6-8 нецелесообразно из-за сжатия шкалы частот в конце поддиапазона. На высоких частотах фазовый сдвиг, вносимый транзисторами, несколько увеличивает перекрытие по частоте. Для стабилизации амплитуды выходного сигнала применена система АРУ с задержкой. Детектор АРУ выполнен на диодах Д1 и Д2, подключен к выходу генератора через эмиттерный повторитель на транзисторе Т6. Это позволило избежать нелинейных искажений детектором АРУ. При возрастании выходного сигнала его амплитуда оказывается больше напряжения открывания диодов Д1 и Д2. Последние открываются, и на конденсаторе С9 возрастает постоянное напряжение. В результате увеличивается коллекторный ток транзистора Т5 и, следовательно, уменьшается коллекторный ток транзистора Т4. В результате уменьшается эквивалентное сопротивление положительной обратной связи, соответственно и уменьшается и коэффициент усиления, а, следовательно, и выходного сигнала. Уменьшение вносимых системой АРУ нелинейных искажений достигается отрицательной обратной связью, которой охвачены каскады на транзисторах Т4 и Т5. Задержка АРУ происходит из-за применения кремниевых диодов Д1, Д2 и транзистора Т5, напряжение база-эмиттер которого закрывает диод Д1. При налаживании генератора следует подстроечным резистором R1, установить выходное напряжение в пределах 0,5-0,55 в, а резисторами R4 и R9 добиться минимальных нелинейных искажений.

Генератор НЧ с мостом Винна

http://*****/NCH%20generator%20s%20mostom%20Vinna%Kgc. htm

Применяя мостик Винна в цепи обратной связи, из обычного усилителя можно получить генератор гармонических колебаний. Запитываемый от 9-вольтовой батарейки (потребляемый ток 10 мА), генератор вырабатывает синусоидальный сигнал амплитудой 1 В в диапазоне частот от 10 Гц до 140 кГц. Генерирующая часть образована операционным усилителем OP1 с петлей положительной обратной связи, образованной RC-цепочкой Винна из резисторов R3, R4, потенциометров 100к и конденсаторов С1-С8. Поддиапазон выбирается сдвоенным переключателем, а плавная настройка внутри поддиапазона производится двухсекционным потенциометром 100к. Для поддержания стабильной амплитуды выходного сигнала в цепь отрицательной обратной связи включены ограничительные диоды VD1, VD2 и резистор R7. Второй операционный усилитель выполняет функцию буферного усилителя, изолирующего цепочку Винна от влияния внешней нагрузки. С помощью потенциометра VR2 регулируется уровень выходного сигнала. Положениям переключателя соответствуют следующие частотные поддиапазоны: "1" - 10Гц; "2" - 100Гц; "3" -1...14 кГц; "4" - 10кГц. Устройство легко монтируется на универсальной монтажной плате и помещается в компактном корпусе.

Радио-Парад №3 2004г стр. 24

Генератор вырабатывает переменное напряжение симметричной прямоугольной, треугольной и синусоидальной форм и предназначен для проверки и настройки различной низкочастотной аппаратуры. Простота схемы и функциональные возможности делают генератор доступным для повторения. Электрическая принципиальная схема приведена на рисунке.

Синусоидальный генератор НЧ

http://nowradio. *****/sinusoidalnuy%20generator%20NCH. htm

На схеме показан простой синусоидальный генератор, выполненный из доступных элементов. Его параметры вполне отвечают требованиям, предъявляемым к измерительным генераторам по стабильности генерируемых колебаний, нелинейности, плавности и ступенчатости регулирования уровня выходного напряжения, малого тока потребления энергии. Этот генератор может быть использован как источник низкочастотных колебаний при настройке и проверке элементов трактов радиоприемников, громкоговорителей, для проверки других измерительных приборов.

Основные технические характеристики.

Диапазон генерируемых колебаний, Гц

Коэфф. нелинейных искажений не более, %,

в поддиапазонах: 10...40 и 85000Гц 0.8

40...85000 Гц 0,3

Максимальный размах выходного напряжения, В 18

Изменение амплитуды выходного напряжения во всем диапазоне

частот не более, дБ 0,2

Потребляемая мощность не более. Вт 2

Низкочастотный синусоидальный генератор на микросхеме DA1 выполнен по мостовой схеме Робинсона-Вина. Выбор поддиапазона (10Гц, 0,1 ..1 кГц, 1 10 кГц, 1кГц) осуществляется переключателем SA1, а плавная установка частоты - сдвоенным переменным резистором R2. Для получения пропорциональности между углом поворота и изменением частоты необходимо, чтобы переменный резистор имел показательную характеристику изменения сопротивления (группа В). Требования к идентичности сопротивлений каждого из двух переменных резисторов не столь высоки, так как небольшие различия могут быть компенсированы подстроечным резистором R7. В цепи отрицательной обратной связи операционного усилителя включено динамическое звено, состоящее из резистора R4 и транзистора VT1. Работой этого звена достигнута стабилизация амплитуды генерируемых колебаний во всем диапазоне. Управляется звено изменением напряжения на затворе полевого транзистора, которое подано с выхода ОУ. Любое изменение на выходе микросхемы DA1 вызывает изменение сопротивления канала сток-исток, а это, в свою очередь, приводит к изменению коэффициента усиления каскада. Низкочастотное напряжение с выхода первого каскада через делитель напряжения на R10R11 подано на неинвертирующий вход усилителя на микросхеме DA2. Коэффициент передачи этого каскада составляет 10. Балансировка работы каскада по постоянному току выполнена подстроечным резистором R12. На выходе каскада подключен аттенюатор с затуханием дБ. Питание устройства от сети переменного тока через понижающий трансформатор с переменным напряжением на вторичной обмотке 21+21 В. При выполнении конструкции генератора, конденсаторы С1 - С8 следует выбрать с допуском отклонения номинала не более 1% расположив их непосредственно между ламелями галетного переключателя SA1. Монтаж устройства производят на печатной плате из фольгированного гетинакса. Настройку генератора выполняют в такой последовательности. К общей точке резисторов R10, R11 подключают осциллограф. Переключатель SA1 устанавливает в положение второго поддиапазона. Подстроечными резисторами R6 и R7 добиваются возбуждения генератора, и вращением переменного резистора R2 проверяют наличие генерации во всем диапазоне перемещения его движка. Затем устанавливают первый поддиапазон, а переменный резистор R2 в положение 2/3 от максимального значения сопротивления. Регулировкой подстроенных резисторов R6 и R7 выбирают такое их положение, где искажения синусоиды минимальны. Для получения указанного в технических характеристиках значения коэффициента нелинейных искажений настройку следует производить с использованием измерителя нелинейных искажений. К выходу микросхемы DA2 следует подключить вольтметр с пределом измерения 0,5...1 В, и подстроечным резистором R12 произвести балансировку работы усилителя на микросхеме DА2. Градуировку регулятора плавного изменения выходного сигнала (R11) производят при измерении напряжения непосредственно на выходном разъеме XS1 в положении аттенюатора 0 дБ. Устанавливая последовательно значения 1, 2. 3 В и так далее, отмечают риски на шкале регулятора.

Радиолюбитель №5 2001г стр. 22

Функциональный генератор 15Гц – 15КГц

http://nowradio. *****/funkcionalnuy%20generator%2015Gc-15Kgc. htm

При налаживании низкочастотной звуковоспроизводящей аппаратуры может понадобиться сигнал не только синусоидальной, но и прямоугольной, треугольной формы.

На рисунке приведена схема функционального генератора, вырабатывающего колебания синусоидальной, прямоугольной, треугольной формы в пределах от 15 Гц до 15 кГц. Весь диапазон перекрывается без переключений одним переменным резистором R2. На операционных усилителях А1.1 и А1.2 сделан мультивибратор. Прямоугольные импульсы снимаются с выхода А1.1. Треугольные снимаются с выхода А1.2 (через буфер на А1.4), а для получения сигнала формы, близкой к синусоидальной (параболической формы) используется формирователь на диодах VD3-VD6 , с которого полученный сигнал поступает на дополнительный усилитель на А1.4. Источник питания - на маломощном силовом трансформаторе Т1, с вторичной обмоткой на 5-7V переменного тока. Однополупериодный выпрямитель на VD7 и VD8 создает двуполярное напряжение, которое стабилизируется стабилитронами VD1 и VD2. Симметричность сигнала, близкого к синусоидальной форме, при налаживании нужно выставить подбором сопротивлений R8 или R9. Диоды VD3-VD6 желательно брать из одной партии.

Радиоконструктор №9 2008г стр. 17

Взято http://. ru/forum/-info-80795.html

Важно. Этот ФГ из журнала Радио №6 1992 стр. 44.

См. Так же «ГКЧ Лукина 300Кгц» и его преобразователь треугольник – синусоида.

20. Преобразователь треугольного напряжения в синусоидальное. http://*****/u2.htm

17. Преобразователь треугольного напряжения в синусоидальное с последовательной аппроксимацией.

http://*****/u2.htm

48. Нелинейный преобразователь пилообразного напряжения в синусоидальное.

49. Формирователь синусоидального напряжения.

52. Преобразователь пилообразного напряжения в синусоидальное.

Генератор низкой частоты - один из необходимых приборов в лаборатории радиолюбителя. Широкий пе­речень устройств, при налаживании которых необходим этот прибор, определяет высокий уровень требований, предъявляемых к его параметрам. .В последнее время» наряду с классическими схемами генераторов, исполь­зующими в качестве частотозадающего элемента пере­страиваемые резонансные jRC-звенья, все большее рас­пространение получают так называемые функциональ­ные генераторы (ФГ). К их преимуществам относятся: высокая стабильность амплитуды выходного напряже­ния; возможность генерирования инфранизких частот; практически равное нулю время установления выходного напряжения и частоты; отсутствие в конструкции дефи­цитных деталей (например, сдвоенных прецизионных пе­ременных резисторов и термисторов). Кроме того, функ­циональные генераторы позволяют получить напряжение не только синусоидальной, но также прямоугольной и треугольной форм. Однако известные схемы таких гене­раторов обладают и рядом недостатков, к основ­ным из которых относятся относительно высокий уровень нелинейных искажений синусоидального

сигнала и огра­ниченный частотный диапазон в области ультразвуковых частот.

Рис. 1. Принципиальная схема генератора

Описываемый функциональный генератор, в котором по возможности уменьшены указанные недостатки, имеет следующие основные параметры:

Форма выходного напряжения. ……. Синусоидальная, треугольная, прямоугольная

Диапазон генерируемых частот, Гц …… 0,

Число поддиапазонов………… б

Коэффициент гармоник, %:

до 50 кГц…………… о,5

до 300 кГц…………… 1,0

Неравномерность амплитудно-частотной характе­ристики: %;

до 50 кГц …………… 1

до 300 кГц…………… 3

Длительность фронтов напряжения прямоуголь­ной формы, не …………… 250

Максимальная двойная амплитуда напряжения-

всех форм, В …-…………. 10

Максимальный ток нагрузки, мА……. 30

Коэффициенты деления выходного делителя на­пряжения, раз … .. . …….. 1, 10, 100, 1000

Плавная регулировка амплитуды выходного на­пряжения. ………….. Не менее 1:20

В схеме функционального генератора помимо основ­ного выхода имеется дополнительный дифференциаль­ный , амплитуда и форма напряжения на котором уста­навливаются синхронно с основным, а сдвиг по фазе равен 180°. Запаздывание фронта сигнала на дифферен­циальном выходе по отношению к основному - не более 40 не. Предусмотрен также выход прямоугольных им­пульсов с уровнем, соответствующим уровням ТТЛ-ло­гики, и регулируемой скважностью в пределах от 11 до 10.

Основой ФГ служит замкнутая релаксационная си­стема, состоящая из интегратора и компаратора и пред­назначенная для получения колебаний прямоугольной и треугольной форм. Постоянная времени интегратора, выполненного на основе операционного усилителя (ОУ) А1 (рис. 1), и, следовательно, частота генерируемых колебаний зависят от емкости одного из конденсаторов С2…С7, включаемого в цепь отрицательной обратной связи с помощью переключателей S1…S4. Напряжение с выхода интегратора подается на вход двухполярного компаратора на ОУ А2 и по достижении порога его срабатывания полярность напряжения на выходе А2, а следовательно, и на входе интегратора меняется на противоположную, и цикл повторяется. Плавная регули­ровка частоты осуществляется резистором R7.

Для преобразования треугольного напряжения в си­нусоидальное использована хорошо зарекомендовавшая себя схема функционального преобразователя на поле­вом транзисторе, подробно описанная в . Для облег­чения налаживания ФГ и повышения качественных по­казателей напряжение на преобразователь поступает с (выхода отдельного масштабного усилителя A3. Регули­ровка его коэффициента усиления и смещения нуля ре­зисторами R22 и R23 позволяют оптимизировать форму треугольного напряжения, подаваемого на функциональ­ный преобразователь на транзисторе V8, и значительно улучшить форму синусоидального сигнала. Необходи­мость введения разделительного конденсатора С8 опре­деляется тем, что начиная уже с частот в несколько килогерц на выходе интегратора А1 возникает смещение среднего уровня сигнала, обусловленное асимметрией порогов срабатывания компаратора, появляющейся на высоких частотах. Без конденсатора С8 напряжение треугольной формы на выходе ФГ становится несиммет­ричным относительно нуля, а форма синусоидального сигнала резко искажается.

Напряжение треугольной формы с выхода ГАЗ по­дается, кроме функционального преобразователя, на вход триггера Шмитта, выполненного на транзисторе V10 и микросхеме DL Скважность прямоугольных импульсов на выходе 8 D1 можно изменять, регулируя порог сраба­тывания триггера резистором R24.

Напряжение синусоидальной, треугольной или - прямо­угольной форм через переключатели формы выходного сигнала 55, S6.2 подается на оконечный масштабный усилитель А4 и далее на усилитель мощности на тран­зисторах V15, V16. Питание к ОУ А4 подведено через RС-фильтры R43C11 и R47C13, предотвращающие воз­можное возбуждение усилителя. В цепь отрицательной обратной связи усилителя включен переменный резистор R40,. которым плавно регулируют амплитуду выходного напряжения. Такой способ регулирования, в отличие от включения потенциометра на входе ОУ, делает шкалу регулятора амплитуды единой для всех форм выходного напряжения и улучшает отношение сигнал - шум при низких уровнях выходного напряжения.

На выходе усилителя включен ступенчатый делитель, .позволяющий получить ослабление выходного сигнала в 10, 100 или 1000 раз. Четыре ступени деления полу­чены с помощью всего двух клавишных переключате­лей - при одновременном нажатии S7 и S8 коэффициент деления равен 1000. Преимуществом такого способа является и то, что при отжатых клавишах (коэффициент деления равен 1) резисторы делителя отключены от вы­хода усилителя, что несколько повышает его нагрузоч­ную способность в этом режиме.

На дифференциальный выход напряжение поступает с аналогичного по схеме инвертирующего усилителя на ОУ А5 и транзисторах V17, V18. Его вход подключен к выходу первого усилителя, а коэффициент усиления по напряжению равен 1. Делитель напряжения диффе­ренциального выхода переключается синхронно с дели­телем основного. Легко заметить, что разность напряже­ний между основным и дифференциальным выходами равна удвоенной амплитуде напряжения на каждом из них. Помимо возможности получения удвоенной ампли­туды сигнала, наличие дифференциального выхода не­обходимо при налаживании ряда устройств с дифферен­циальным входом, например самопишущих приборов или измерительных дифференциальных усилителей.

О той роли, которую играет реле K1, следует сказать особо. Дело в том, что фронты прямоугольных импульсов с выхода компаратора, если их непосредственно подвести к переключателю S6.2, легко проникают через его про-кодную емкость на вход оконечного усилителя и вызы­вают значительные искажения формы треугольного и синусоидального сигналов. Контакты реле K1, коммути­руя цепи, имеющие заметную емкость относительного входа А4, соединяют их при генерации напряжений - ука­занной формы с общим проводом, чем этот вид искаже­ний полностью устраняется.

Питается генератор от любого двуполярного стабили­зированного источника питания напряжением ±15 В, с малыми пульсациями выходного напряжения и допу­стимым током нагрузки не менее 0,15 А. Может быть, например, использован блок питания генератора, опи­санного в . При выборе и налаживании источника питания следует обратить особое внимание на устране­ние самовозбуждения стабилизатора напряжения, весьма вероятного при питании генераторных схем.

Микросхемы К574УД1А можно заменить на К574УД1Б. Если же ограничить рабочую частоту генера-.тора до 30 кГц, возможна замена их на К140УД8Б, без изменения принципиальной схемы. Вместо 153УД1 мож­но использовать К153УД1 или К553УД1 (с любой бук­вой), но при этом для получения максимальной частоты генерации 300 кГц может потребоваться их подбор. На частотах до 100 кГц указанные типы операционных уси­лителей работают без подбора. При применении в каче­стве А2 других типов ОУ получить частоту генерации выше 50…70 кГц при удовлетворительной линейности АЧХ не удается.

В качестве D1 можно использовать любые инверторы серий К133, К155. Транзисторы КТ315 и КТ361 могут быть заменены на любые кремниевые транзисторы ма­лой мощности с соответствующей проводимостью и ана­логичными параметрами. Если в усилителях мощности применить транзисторы серии КТ814, КТ815 (с любой буквой), то нагрузочная способность генератора может быть значительно повышена. При такой замене номина­лы резисторов R53…R56 и R57…R64 следует уменьшить примерно в 5 раз. Диоды Д223 можно заменить любыми кремниевыми высокочастотными, диоды Д311 - Д18, ГД507, а вместо транзистора КП303Е - КП303Г или КП303Ф. Конденсаторы С2, CS - К53-7 или иные непо­лярные. Остальные конденсаторы - керамические типов КМ, КЛС, КТК и т. п. Можно использовать и бумажные конденсаторы. Если предполагается эксплуатация ФГ в значительном диапазоне температур, необходимо вы­брать типы конденсаторов С2…С7 с малым ТКЕ. Предва­рительный подбор номиналов С2…С6 с точностью до 1 % значительно упрощает налаживание.