Лабораторные аналитические весы. Аналитические весы - незаменимый атрибут исследовательских лабораторий Применение аналитической весов на промышленно опасных объектах

Лабораторная работа №2

Тема : Изучение устройства аналитических весов. Изучение правил взвешивания.

Цель : научиться анализировать устройство аналитических весов, производить на них взвешивание.

Оборудование и материалы : аналитические весы, технические весы, наборы разновесов, сухая соль NaCl, бюксы.

Общие положения

И методика выполнения работы

Изучите устройство технических весов, правила работы на них

Для проведения некоторых лабораторных работ требуется взвешивание реактивов с точностью до 0,01 г. Этому требованию удовлетворяют технические весы (рис. 1).

Основной частью весов является стойка 1 с коро­мыслом 2 и чашками для взвешивания 8. На коромысле имеются три трехгранные призмы 3. Для предотвра­щения снашивания призм служит арретирующее устройство (арретир) 9, освобождающее их от на­грузки в нерабочем состоянии.

Стойку весов устанавливают в строго вертикаль­ном положении. Этого добиваются с помощью устано­вочных винтов 10, контроль осуществляют по отвесу 5.

Регулировочные винты 4 служат для приведения весов в равновесие так, чтобы стрелка 6 находилась против нулевого деления шкалы 7 или отклонялась от нулевого деления одинаково в обе стороны.

Кроме технических весов в лаборатории можно использовать ручные (аптечные) весы. Для точного взвешивания применяют аналитические весы.

Устанавливает и уравновешивает весы лаборант. После установки запрещается передвигать или пере­носить весы на другое место. С правой стороны весов должен быть закрепленный за ними набор разновесов и пинцет.

Рис. 1. Технические весы:

1 - стойка; 2 - коромысло; 3 - призмы; 4 - регулировочные винты;

5 - отвес; 6 - стрелка; 7 – шкала; 8 – чашки; 9 - арретирующее уст­ройство; 10 - установочные винты

Набор разновесов содержит гирьки массами 100, 50, 20, 10, 5, 2, 1 г и пластинки массами 500, 200, 100, 50, 20, 10 мг. Пользуясь этим набором, можно составить любую массу от 0,01 до 211,1 г. Пинцет служит для взятия разновесов.



Правила взвешивания на технических весах:

1. Проверить исправность весов. Для этого плавно открыть арретир и наблюдать за качанием стрелки. Если отклонения в обе стороны от нуля одинаковы, то весы считать исправными.

2. Предметы и разновесы следует класть на сере­дину чашек и только в арретированном положении весов.

3. Взвешиваемый предмет поместить на левую чашку весов. Химические реактивы взвешивать в бюксах , на часовом стекле или в пробирках . Пред­варительно тару надо взвесить или уравновесить дробью. Запрещается ставить на чашки весов горячие, грязные или мокрые предметы.

4. Разновесы надо ставить на правую чашку весов в определенном порядке. Начинать с больших разно­весов и постепенно переходить к меньшим, пока не будет достигнуто равновесие.

5. Разновесы следует брать только пинцетом. За­прещается класть разновесы на стол и на чашку весов со взвешиваемым предметом. Не допускать попада­ния реактивов на разновесы. По окончании взвешивания записать цену всех положенных на весы разновесов.

6. Привести весы в порядок. Убрать все с чашек весов, разновесы разложить по своим гнездам.

7. Проверить работоспособность весов и арретировать их.

Изучите устройство аналитических весов, правила работы на них

Аналитические демпферные весы АДВ-200. Они имеют пре­дельно допустимую нагрузку 200 г (рис. 2). Весы смонтирова­ны на базисной доске 10 и помещены в футляр для защиты от пы­ли и колебаний воздуха.

Базисная доска опирается на два установочных винта 7, с по­мощью которых она устанавливается в горизонтальное положе­ние, проверяемое по шаровому уровню. Для ускорения взвешива­ния весы снабжены демпферами 11 и специальным устройством для снятия и наложения мелких гирек без открывания дверцы 12. Демпферы - это устройства, сокращающие время, необходи­мое для успокоения коромысла.

Для уменьшения изнашиваемости рабочих частей весы снаб­жены арретиром 9, т. е. приспособлением, позволяющим подни­мать коромысло весов и снимать нагрузку с призм. В нерабочем состоянии весы всегда должны быть арретированы. Помещать на чашки 6 весов или снимать с них предмет и разновески можно только предварительно арретировав весы.

Рис. 2. Общий вид аналитических весов АДВ-200: 1 - система рычагов; 2 - малый лимб; 3 - большой лимб; 4 - стрелка весов; 5 - световой экран; 6 - чашки весов; 7 - установочные винты; 5 - регулиро­вочный винт; 9 - арретир; 10 - базисная доска; 11 - демпферы; 12 - левая дверца.

Для удобства отсчета весы снабжены оптическим приспособ­лением со световым экраном 5 (вайтографом), на котором видно увеличенное изображение микрошкалы, прикрепленной к стрел­ке весов 4. Микрошкала вправо и влево от нуля разделена на 10 больших делений, которые пронумерованы вправо от +1 до +10, а влево от -1 до -10. Каждое большое деление разбито на 10 ма­лых. Весы отрегулированы таким образом, чтобы при нагрузке одной чашки на 10 мг стрелка отклонялась от нуля точно на 10 делений. Таким образом, цена одного малого деления равна 0,1 мг, или 0,0001 г. На правой сережке укреплена горизонталь­ная планка, на которую с помощью системы рычагов 1 навешива­ются мелкие гирьки массой от 10 до 990 мг. Рычаги управляются поворотом двух лимбов 2 и 3. На большом (внешнем) лимбе нане­сены деления от 0 до 9, соответствующие 0, 100, 200 и до 900 мг. На малом (внутреннем) лимбе обозначены десятки миллиграм­мов (мг) - 0, 10, 20 и т. д. до 90 мг. К весам прилагается также комплект гирь массой от 1 до 100 г.

Правила работы на аналитических весах:

Приступая к взвешиванию, необходимо помнить, что аналитические весы один из самых точных и важных из­мерительных приборов в лаборатории количественного анализа. Обращаться с ними надо аккуратно и осторож­но. Ниже приведены основные правила, которые необхо­димо хорошо усвоить и обязательно выполнять при рабо­те с аналитическими весами.

1. Перед каждым взвешиванием проверяют состояние весов. Аккуратно очищают пыль, проверяют нулевую точку.

2. При обнаружении неисправности весов ни в коем случае не следует исправлять весы самому.

3. Нельзя допускать никаких прикосновений к неарретированным весам. Опускают и поднимают арретир осто­рожным и плавным поворотом рукоятки.

4. Нельзя сдвигать весы с занимаемого места.

5. Не перегружать весы сверх предельной нагрузки (в большинстве случаев 200 г).

7. Прибавляют или убавляют взвешиваемое вещество только вне футляра весов.

8. Нельзя взвешивать горячие или слишком холодные предметы. Взвешиваемые предметы должны иметь темпе­ратуру весовой комнаты.

9. Все взвешивания данного анализа проводят на одних и тех же весах, пользуясь одним и тем же разновесом.

10. По окончании взвешивания необходимо убедиться, что весы арретированы, нагрузка снята, дверцы футляра полностью закрыты.

Техника взвешивания на демпферных весах:

При взвешивании на демпферных весах необходимо со­блюдать следующие правила:

1. Включают осветитель в сеть освещения при помощи шнура со штепсельной вилкой.

2.Регулируют положение нулевой точки; для этого, не открывая дверок шкафа, осторожно поворачивают до от­каза диск арретира. Автоматически загорающаяся элект­рическая лампочка освещает на экране вайтографа увеличенное изображение микрошкалы. При колебании стрел­ки изображение микрошкалы перемещается вдоль экра­на, но благодаря демпферам стрелка очень быстро оста­навливается. Если весы не нагружены, нуль шкалы дол­жен точно совпадать с вертикальной чертой на экране. Это совпадение достигается вращением в ту или иную сто­рону регулировочного винта, находящегося снаружи над диском арретира.

3.На левую чашку весов помещают взвешиваемый пред­мет, а на правую - разновески из коробки, масса которых составляет целое число граммов.

4.Закрывают дверцу шкафа. Для определения десятых долей грамма при помощи внешнего диска последователь­но навешивают разновески 500; 200; 100 мг. Замечают, в какую сторону отклоняется стрелка весов. После каждого поворота диска, т.е. при снятии или наложении каких-либо разновесок, необходимо арретировать весы. Разно­вески в сотые доли грамма устанавливают при помощи внутреннего диска.

5.Тысячные и десятитысячные доли грамма отсчиты­вают по микрошкале. Для этого нужно повернуть диск арретира до отказа и после того, как прекратятся колеба­ния стрелки, сделать отсчет положения вертикальной линии на шкале экрана. Крупные деления этой шкалы соответствуют тысячным, а мелкие - десятитысячным долям грамма. Перед цифрами на шкале стоят знаки «плюс» или «минус». Знак «плюс» показывает, что результат сде­ланного отсчета нужно прибавить к массе помещенных на весах разновесок; знак «минус» показывает, что этот ре­зультат нужно вычесть.

Например , если масса разновески на весах 18,64 г, а отсчет на экране равен 5,7 мг, т.е. 0,0057 г, то в слу­чае положительного значения отсчета масса взвешива­емого предмета составляет 18,6457 г; если же значение отсчета отрицательно, масса равна:

18,64 - 0,0057 = 18,6343 г.

6. После окончания взвешивания записывают получен­ный результат, снимают с весов взвешенный предмет и разновесы.

Назначение лабораторных весов - определение массы предметов и жидких или сыпучих веществ. В зависимости от того где применяются эти приборы, к ним предъявляются определенные требования. Для взвешивания продуктов в магазинах и супермаркетах допускается определенная погрешность в показаниях, а вот в ювелирных мастерских, фармакологии и испытательных лабораториях используются измерительные приборы с высоким классом точности.

Описывая лабораторные весы , следует сразу отметить, что это универсальные приборы, которые используются для различных препаративных и аналитических исследований. Механические весы давно ушли в прошлое, уступив место электромеханическим или электронным приборам.

Современные электронные - очень точные и практичные приборы, они не требуют использования дополнительных громоздких механических гирь и других деталей. Устройство лабораторных весов сложное в техническом плане, одновременно приборы простые в использовании. Они оборудованы электрическими датчиками, передающими информацию о массе взвешиваемых объектов или веществ на информативный дисплей.

Ко всем лабораторным весам предъявляются общие технические требования . Характеристики приборов должны отвечать определенным требованиям ГОСТ и регламенту протокола Совета по метрологии, стандартизации и сертификации.

Классификация лабораторных весов

В зависимости от сферы применения и класса точности, классифицируются по следующим типам:

  1. Аналитические весы. Это оборудование отвечает 1-2 классу точности и определяет массу объектов с точностью до 5 знака после запятой, а погрешность таких приборов не превышает 0,0002 гр.
  2. Лабораторные весы класса 3,4. Эти приборы определяют массу с точностью до третьего знака после запятой.
  3. Технические весы, соответствующие среднему классу точности. Они позволяют взвешивать образцы с точностью до 1/10 гр.

В зависимости от класса точности и определяются с тем, какие лабораторные весы подобрать для тех или иных целей.

Что взвешивают на лабораторных весах?

Современные электронные лабораторные весы используются для взвешивания грузов, массой от 10 мг. Они применяются в фармакологии и медицине для точной дозировки препаратов. Эти измерительные приборы получили широкое применение в пищевой промышленности и химической отрасли. Минимальная погрешность лабораторных весов позволяет использовать их там, где нужно с высокой точностью определить массу объектов или определить вес образцов.

Различные классы точности определяют их предназначение. Чем выше оборудование по классификации, тем точнее показатели.

Как выбрать?

Задумываюсь над тем как выбрать , следует учитывать нижеприведенные факторы:

  • наибольший измерительный предел весов. Он определяется максимальной массой взвешиваемой тары и образца.
  • калибровка с помощью встроенного груза. Этот процесс автоматически запускается по сигналу датчика температуры, встроенного в измерительный прибор.
  • функциональные характеристики и должны позволять решать, при взвешивании, нестандартные задачи (определять вес сложной по форме тары, фильтров, нивелировать статистические заряды, калибровать пипетки и т.д).

В комплекте с лабораторными весами должно прилагаться руководство по эксплуатации , в котором детально описано: как определить нулевую точку , какой НмПВ (минимальный предел взвешивания) прибора, соответствующий механизм калибровки и другая информация о характеристиках и возможностях оборудования.

Согласно принятой международной классификации к группе аналитических весов относятся измерительные приборы, разрешающая способность которых (иными словами – относительная величина максимальной нагрузки к минимальному пределу деления) соответствует значению, не меньшему, чем 10 тысяч. Притом предел взвешивания не выше пятидесятикилограммовой отметки.

А согласно классификации, принятой на просторах СНГ, отсутствует номенклатура измерительных приборов «весы аналитические ». Существует оборудование с классом точности "аналитическим". Но неофициально оборудование, попадающее в данную классификацию, принято именовать аналитическими весами.

Сфера применения аналитических весов

К группе аналитического относят измерительное оборудование, соответствующее специальному (1) классу точности, определяемому измерительной шкалой с ценой деления, соответствующей 0.0001 граммов. Основная сфера применения весов аналитического класса – разного рода лабораторный анализ (например, хроматография, титрование), начинающийся с обязательной процедуры навески. Также, аналитические весы сегодня являются совершенно незаменимым средством, применяемым в медицине в процессе диагностики всевозможных заболеваний (в особенности – инфекционной природы) и фармакологии для точной дозировке ингредиентов различных лекарственных препаратов. Широкое распространение получило применение измерительных приборов аналитического класса различного рода контролирующими организациями, исследующими качество сложносоставных продуктов питания.

Разновидности аналитических весов

Современные модели весов аналитических электронных классифицируются согласно следующим критериям:

  • НПВ (наибольший предел взвешивания). У большинства популярных модификаций аналитических весов данный параметр колеблется в пределах 60-320 граммов;
  • размер платформы. Диаметр рабочей поверхности измерительных приборов аналитического класса находится в пределах 75-91 миллиметр;
  • дискретность измерений. Существует особая категория аналитического измерительного оборудования, способного осуществлять замеры с пределом измерений в 0,00001 гр. Основная же масса аналитических весов позволяет производить замеры с точностью до 0.0001 гр.

Факторы, влияющие на точность измерений весами аналитического класса точности

Мало купить аналитические весы надлежащего класса точности, необходимо для проведения корректных замеров учитывать множество внешних факторов. На точность данных, полученных в результате измерений массы приборами аналитического класса точности, влияют следующие факторы:

  • правильное расположение прибора (горизонтальность). Малейшее отклонение от идеально горизонтального положения обязательно приведет к существенным погрешностям измерений;
  • плотность воздушного пространства. Данный параметр является совокупным значением влияния атмосферного давления, влажности и температуры. Может привести к некоторому увеличению погрешности измерений. Наиболее значимым фактором из вышеперечисленных является температура внешней среды. С ее изменением на 5 градусов точность показаний может измениться на 0.1граммов;
  • широта, на которой производятся измерения. Класс точности аналитических весов , на которых производятся измерения в Мурманске и в Сочи, может быть одинаковым, а показания - существенно отличаться. Ввиду понижения значения ускорения свободного падения с уменьшением величины широты показания весов при одинаковых замерах в данном случае могут разниться на 1 грамм;
  • высота произведения замеров. Даже перемещение аналитических весов между этажами влечет за собой изменение результатов замеров, не говоря уж о произведении измерений в местностях со значительным перепадом высоты над уровнем моря;
  • воздушные потоки. Различное климатическое оборудование, открытые окна, двери, передвигающиеся сотрудники способны вызвать воздушные потоки интенсивностью, способной исказить результаты замеров массы. Дабы исключить влияние данного фактора, следует применять ветрозащитные экраны;
  • также на точность замеров могут оказывать влияние такие факторы, как электростатический заряд взвешиваемого объекта либо его намагниченность, присутствие рядом оборудования, способного продуцировать сильное электромагнитное поле.

Для производства точных замеров аналитическими весами необходимо регулярно осуществлять их калибровку.

Калибровка аналитических весов

  • с внешней калибровкой. Для ее осуществления требуется калиброванный груз;
  • с внутренней калибровкой. Во время поверки точности измерений прибора не требуется отдельного калибровочного груза, поскольку оборудование данной группы изначально оснащено собственным стандартом – калибровочной гирей.

Аналитические весы - наиболее распространенный класс дву- и одноплечих коромысловых весов различных модификаций с максимальной нагрузкой до 200 г и чувствительностью 0,01-0,1 мг. Микроаналитические весы отличаются от аналитических лишь тем, что у них предельная нагрузка около 20 г, а чувствительность доведена до 0,01-0,001 мг. Под ультрамикровесами понимают все весы, чувствительность которых составляет 10 -5 - 10 -3 мг, а максимальная нагрузка колеблется от 1 г до 10 г.

В аналитических весах новейших типов разновес находится около коромысла (встроенные гири) и навешивается на него либо механическим, либо автоматическим приспособлением при взвешивании вещества. В этом случае подбор гирь становится намного легче и проще, устраняется необходимость в тщательном центрировании на чашке гирь большой массы. Исключается также открывание дверцы весов, и поэтому внутри их не создаются воздушные вихри, нарушающие температурный режим взвешивания.

Основные узлы аналитических весов. Порядок взвешивания на аналитических весах разного вида определяется инструкцией, прилагаемой к каждому типу весов. Здесь рассмотрим наиболее важные узлы и характеристики взвешивания.

Арретир (нем. Arretier(ung), франц. arreter - фиксировать, останавливать) - приспособление для установки и закрепления коромысла весов в нерабочем положении, чтобы предохранить ребра призм от быстрого изнашивания. Другое название этого приспособления - изолир. У арретированных весов ни одна призма не касается своих опорных агатовых подушек. Расстояние между ребром призмы и плоскостью подушки составляет у арретированных весов 0,1-0,3 мм. Такой небольшой зазор позволяет сохранять постоянными места соприкосновения призм с подушками и исключает сильные удары призм о грузоприемные подушки при неосторожном опускании коромысла арретиром. У арретированных весов чашки висят не на коромысле, а покоятся на упорах (см. рис. 64, а).

Рис. 66. устройство вейтографа

Рис. 67. Устройство демпфера Кюри (а)и и пластинчатого демпфера (б):|Н

а: 1 - стойка коромысла; 2 - стрелка весов;3 - стакан, висящий на коромысле; 4 - стакан,закрепленный на стойке весов; 5 - крючок коромысла

Опускать арретир надо очень медленно, чтобы призмы мягко соприкоснулись с опорными подушками, а не ударились бы о них. Только тогда, когда коромысло весов начнет уже покачиваться и дрогнет конец стрелки, можно несколько ускорить движение арретира и опустить его до конца.

Пока весы не арретированы, ничего нельзя помещать на чашки, а также снимать с них что-либо или вообще трогать весы, открывать или закрывать боковые дверцы и поднимать переднюю.

Стрелка весов и шкала - наиболее простые отсчетные устройства для определения положения нулевой точки. При рассмотрении шкалы невооруженным глазом размер деления нельзя делать меньше 1 мм, так как это сильно затруднит наблюдение: оценить положение стрелки относительно шкалы можно только с точностью до 0,5 мм при условии, что стрелка движется вблизи шкалы.

В современных аналитических весах применяют для отсчета отклонения стрелки оптические устройства, позволяющие доводить точность отсчета до 0,001-0,005 мм. Такие устройства называют вейтографами (рис. 66). Луч света от осветителя 1, расположенного сзади весов, проходит через линзы 2 и окно в колонке 3 коромысла и микрошкалу 5, закрепленную в нижней части стрелки 4 весов. Затем луч света попадает в объектив 6 установленный перед стрелкой, а после него отразившись от двух зеркал 7 и 8, падает на матовый экран 9, на котором в качестве отсчетного знака нанесена вертикальная черта. Исследователь видит на экране в увеличенном виде деления микрошкалы, перемещающиеся относительно вертикальной черты.

Для уменьшения числа колебаний коромысла около положения равновесия, а следовательно, и перемещения стрелки со шкалой или вдоль шкалы, применяют успокоители колебаний -демпферы.

Демпфер (от нем. Dampfer - глушитель) может иметь разное устройство. На рис. 67 приведена схема демпфера Кюри и пластинчатого демпфера. При наклонении коромысла весов вправо верхний стакан 3 (рис. 67, а) демпфера Кюри сжимает в нижнем неподвижном стакане 4 воздух и заставляет его выходить по длинному извилистому пути наружу. Работа выхода воздуха совершается за счет энергии колебаний весов, что и приводит к быстрому торможению колебаний.

В пластинчатом демпфере (рис. 67, б) роль верхнего стакана выполняет плоский диск-поршень 2, жестко скрепленный с концом коромысла весов. Диск перемещается в стакане 1 с небольшим радиальным зазором. Сопротивление движению регулируют путем перемещения заслонки 3. Такой демпфер применяют преимущественно в двухпризменных весах.

Встречаются весы с магнитным успокоителем, в котором пластинка из немагнитного материала, прикрепленная к коромыслу, перемещается между полюсами постоянного магнита.

Кюри Пьер (1859-1906) - французский физик и химик, лауреат Нобелевской премии по физике. Один из основателей учения о радиоактивности.

Нулевая отметка - это среднее арифметическое показаний отклонений стрелки от положения равновесия, наблюдаемых при качаниях ненагруженных весов. Нулевую отметку проверяют перед каждым взвешиванием и определяют ее методом качаний, основанным на измерении 3-5 последовательных отклонений стрелки в одну и другую сторону. Первые 2-3 колебания после осторожного опускания коромысла арретиром не принимают во внимание, а последующие отклонения стрелки записывают. Например, получены отклонения стрелки влево: 5,6; 5,8 и 5,9 (рис. 68). Среднее значение 17,3:3 = 5,8. Отклонения вправо составили 14,9 и 14,7. Среднее значение 29,6:2 = 14,8. Тогда нулевая отметка равна 1/2(5,8 + 14,8) = 10,3. Для проверки полученного результата повторяют определение положения нулевой отметки три раза, каждый раз опуская коромысло весов при Помощи арретира, а затем поднимая его.

Из полученных трех результатов берут среднее арифметическое, которое и принимают за истинное положение равновесия (нулевую отметку). Отсчеты берут с точностью до десятых долей Деления, начиная всегда с какой-нибудь одной стороны шкалы. на рис. 68 приведены отсчеты по шкале, имеющей нуль слева.

В весах с демпферами положение равновесия (нулевая отметка) отсчитывают непосредственно по шкале после полной остановки стрелки. Показания весов считают устойчивыми, если отклонения от положения нулевой отметки каждый раз не превышают 0,2 деления шкалы. Масса взвешиваемого вещества будет равна массе гирь только в том случае, когда при взвешивании стрелка весов будет находиться в положении равновесия, отвечающего в данном случае делению шкалы 10,3.

Рис. 68. Отсчет показаний стрелки весов при колебаниях коромысла

Чувствительность весов - это минимальное изменение массы, которое весы в состоянии отметить. Чувствительность коромысловых весов определяют числом делений шкалы, указываемых стрелкой коромысла при нагрузке чашки 1 мг. Чем меньше масса предмета, вызывающая отклонение стрелки на одно деление шкалы, тем чувствительнее весы. Чувствительность весов - это цена (в мг) одного деления шкалы.

Чувствительность весов зависит от расстояния 1 (см. рис. 64) между центром тяжести коромысла и линией опоры ребра опорной призмы. Чтобы весы стали чувствительнее, т. е. чтобы меньший груз отклонял стрелку на больший угол, надо уменьшить значение 1. Для этого на аналитических весах подвинчивают гайку вверх по винту, установленному вертикально над коромыслом, или перемещают специальную муфточку на стрелке весов. Излишнее увеличение чувствительности весов не рекомендуется, так как при этом сильно возрастает период колебаний стрелки, а значит, и время, требующееся на взвешивание. Поэтому устанавливают центр тяжести на такой высоте, чтобы груз 1 мг вызывал отклонение стрелки не более чем на 3-4 деления шкалы.

Для определения чувствительности аналитических весов при полной их нагрузке на каждую чашку помешают гири по 200 г и после 2-3 колебаний стрелки записывают ее отклонение вправо на L1 делений шкалы, влево на l2 делений и снова вправо на h делений шкалы. Положение нулевой отметки L1 будет равно:

L1 = 1/4(L1 + 2L2 + L3). (3.1)

Затем, не арретируя весы, добавляют на одну из чашек гирю о очень малой массой т (1-2 мг) и снова определяют из показаний стрелки нулевую отметку L2 по формуле (3.1). Тогда чувствительность весов будет равна в мг/деление шкалы.

S= m/L1 + L2) (3-2)

Подобным образом определяют чувствительность весов при всякой другой нагрузке.

Обычно проверку чувствительности весов проводят при полной нагрузке и при 1/10 ее части.

Так как чувствительность весов следует находить при каждом точном взвешивании, то для сокращения времени ее определяют по предварительно построенному графику, отложив на оси абсцисс нагрузку, а на оси ординат - соответствующую этим нагрузкам чувствительность.

у хороших весов чувствительность не зависит от нагрузки и график будет представлять горизонтальную прямую. Однако с течением времени, по мере затупления ребер призм коромысла, чувствительность весов все больше начинает зависеть от нагрузки.

Значение чувствительности аналитических весов и положение нулевой отметки принимают во внимание при точном взвешивании, после того как уже записаны значения целых миллиграммов по показаниям делений коромысла, на которые посажен рейтер. Если чувствительность весов равна S = 0,05 мг/деление шкалы, а отклонение стрелки от нулевой отметки при нагрузке, например, в 20,531 г равно 5 делениям шкалы, причем чашка с грузом отклонилась вниз по сравнению с гиревой чашкой (недогруз), то для получения истинной массы груза к нагрузке в 20,531 г добавляют 5S = 0,25 мг и масса груза будет равна 20,53125 г.

МЕтодические указания по проведению анализа риска опасных производственных объектов

1. Область применения

1.1. Настоящие «Методические указания по проведению анализа риска опасных производственных объектов» (далее – Методические указания) устанавливают методические принципы, термины и понятия анализа риска, общие требования к процедуре и оформлению результатов, а также представляют основные методы анализа опасностей и риска аварий на опасных производственных объектах.

1.2. Методические указания разработаны в соответствии с требованиями и в развитие следующих документов:

Федеральный закон «О газоснабжении в Российской Федерации»» (принят Государственной Думой 12 марта 1999 г.);

РД 03-315-99. Положение о порядке оформления декларации промышленной безопасности и перечне сведений, содержащихся в ней. Утверждено постановлением Госгортехнадзора России от 07.09.99 № 66. Зарегистрировано Минюстом РФ 07.10.99, регистрационный № 1926 (Бюллетень нормативных актов федеральных органов исполнительной власти от 25.10.99 № 43).

1.3. Методические указания предназначены для специалистов организаций, осуществляющих проектирование и эксплуатацию опасных производственных объектов, экспертных и страховых организаций, разработчиков деклараций промышленной безопасности и специалистов в области анализа риска.

2. Основные определения

В целях настоящего документа применяются следующие определения:

2.1. Авария – разрушение сооружений и (или) технических устройств, применяемых на опасном производственном объекте, неконтролируемые взрыв и (или) выброс опасных веществ (ст. 1 Федерального закона «О промышленной безопасности опасных производственных объектов» от 21.07.97).

2.2 Анализ риска аварии – процесс идентификации опасностей и оценки риска аварии на опасном производственном объекте для отдельных лиц или групп людей, имущества или окружающей природной среды.

2.3 Идентификация опасностей аварии – процесс выявления и признания, что опасности аварии на опасном производственном объекте существуют, и определения их характеристик.

2.4 Опасность аварии – угроза, возможность причинения ущерба человеку, имуществу и(или) окружающей среде вследствие аварии на опасном производственном объекте. Опасности аварий на опасных производственных объектах связаны с возможностью разрушения сооружений и (или) технических устройств, взрывом и (или) выбросом опасных веществ с последующим причинением ущерба человеку, имуществу и (или) нанесением вреда окружающей природной среде.

2.5 Опасные вещества – воспламеняющиеся, окисляющие, горючие, взрывчатые, токсичные, высокотоксичные вещества и вещества, представляющие опасность для окружающей природной среды, перечисленные в приложении 1 к Федеральному закону «О промышленной безопасности опасных производственных объектов» от 21.07.97.

2.6 Оценка риска аварии – процесс, используемый для определения вероятности (или частоты) и степени тяжести последствий реализации опасностей аварий для здоровья человека, имущества и/или окружающей природной среды. Оценка риска включает анализ вероятности (или частоты), анализ последствий и их сочетания.

2.7 Приемлемый риск аварии – риск, уровень которого допустим и обоснован исходя из социально-экономических соображений. Риск эксплуатации объекта является приемлемым, если ради выгоды, получаемой от эксплуатации объекта, общество готово пойти на этот риск.

2.8 Риск аварии – мера опасности, характеризующая возможность возникновения аварии на опасном производственном объекте и тяжесть ее последствий. Основными количественными показателями риска аварии являются:

Технический риск – вероятность отказа технических устройств с последствиями определенного уровня (класса) за определенный период функционирования опасного производственного объекта;

Индивидуальный риск – частота поражения отдельного человека в результате воздействия исследуемых факторов опасности аварий;

Потенциальный территориальный риск (или потенциальный риск) – частота реализации поражающих факторов аварии в рассматриваемой точке территории;

Коллективный риск – ожидаемое количество пораженных в результате возможных аварий за определенный период времени;

Социальный риск, или F/N кривая – зависимость частоты возникновения событий F, в которых пострадало на определенном уровне не менее N человек, от этого числа N. Характеризует тяжесть последствий (катастрофичность) реализации опасностей;

Ожидаемый ущерб – математическое ожидание величины ущерба от возможной аварии, за определенный период времени.

2.9. Требования промышленной безопасности – условия, запреты, ограничения и другие обязательные требования, содержащиеся в федеральных законах и иных нормативных правовых актах Российской Федерации, а также в нормативных технических документах, которые принимаются в установленном порядке и соблюдение которых обеспечивает промышленную безопасность (ст. 3 Федерального закона «О промышленной безопасности опасных производственных объектов» от 21.07.97).

2.10. Ущерб от аварии - потери (убытки) в производственной и непроизводственной сфере жизнедеятельности человека, вред окружающей природной среде, нанесенные в результате аварии на опасном производственном объекте и исчисляемые в денежном эквиваленте.

3. Общие положения

3.1. Анализ риска аварий на опасных производственных объектах (далее – анализ риска) является составной частью управления промышленной безопасностью. Анализ риска заключается в систематическом использовании всей доступной информации для идентификации опасностей и оценки риска возможных нежелательных событий.

3.2. Результаты анализа риска используются при декларировании промышленной безопасности опасных производственных объектов, экспертизе промышленной безопасности, обосновании технических решений по обеспечению безопасности, страховании, экономическом анализе безопасности по критериям «стоимость – безопасность – выгода», оценке воздействия хозяйственной деятельности на окружающую природную среду и при других процедурах, связанных с анализом безопасности.

3.3. Настоящие Методические указания являются основой для разработки методических документов (отраслевых методических указаний, рекомендаций, руководств, методик и т.п.) по проведению анализа риска на конкретных опасных производственных объектах.

3.4. Настоящие Методические указания не определяют необходимость, периодичность проведения анализа риска, а также конкретные уровни и критерии приемлемого риска. Конкретные требования к анализу риска, при необходимости, могут уточняться нормативными документами, отражающими специфику опасных производственных объектов.

3.5. Основные задачи анализа риска аварий на опасных производственных объектах заключаются в представлении лицам, принимающим решения:

объективной информации о состоянии промышленной безопасности объекта,

сведений о наиболее опасных, «слабых» местах с точки зрения безопасности,

4. порядок проведения анализа риска

4.1. Основные этапы анализа риска

4.1.1. Процесс проведения анализа риска включает следующие основные этапы:

Планирование и организация работ;

Идентификация опасностей;

4.1.2. Каждый этап анализа риска следует оформлять в соответствии с требованиями п. 6.

4.2. Планирование и организация работ

4.2.1. На этапе планирования работ следует:

Определить анализируемый опасный производственный объект и дать его общее описание;

Описать причины и проблемы, которые вызвали необходимость проведения анализа риска;

Подобрать группу исполнителей для проведения анализа риска;

Определить и описать источники информации об опасном производственном объекте;

Указать ограничения исходных данных, финансовых ресурсов и другие обстоятельства, определяющие глубину, полноту и детальность проводимого анализа риска;

Четко определить цели и задачи проводимого анализа риска;

Обосновать используемые методы анализа риска;

Определить критерии приемлемого риска.

4.2.2. Для обеспечения качества анализа риска следует использовать знание закономерностей возникновения и развития аварий на опасных производственных объектах. Если существуют результаты анализа риска для подобного опасного производственного объекта или аналогичных технических устройств, применяемых на опасном производственном объекте, то их можно применять в качестве исходной информации. Однако при этом следует показать, что объекты и процессы подобны, а имеющиеся отличия не будут вносить значительных изменений в результаты анализа.

4.2.3. Цели и задачи анализа риска могут различаться и конкретизироваться на разных этапах жизненного цикла опасного производственного цикла.

4.2.3.1. На этапе размещения (обоснования инвестиций или проведении предпроектных работ) или проектирования опасного производственного объекта целью анализа риска, как правило, является:

Выявление опасностей и априорная количественная оценка риска с учетом воздействия поражающих факторов аварии на персонал, население, имущество и окружающую природную среду;

Обеспечение учета результатов при анализе приемлемости предложенных решений и выборе оптимальных вариантов размещения опасного производственного объекта, применяемых технических устройств, зданий и сооружений опасного производственного объекта с учетом особенностей окружающей местности, расположения иных объектов и экономической эффективности;

Обеспечение информацией для разработки инструкций, технологического регламента и планов ликвидации (локализации) аварийных ситуаций на опасном производственном объекте;

Оценка альтернативных предложений по размещению опасного производственного объекта или техническим решениям.

4.2.3.2. На этапе ввода в эксплуатацию (вывода из эксплуатации ) опасного производственного объекта целью анализа риска может быть:

Выявление опасностей и оценка последствий аварий, уточнение оценок риска, полученных на предыдущих этапах функционирования опасного производственного объекта;

Проверка соответствия условий эксплуатации требованиям промышленной безопасности,

Разработка и уточнение инструкций по вводу в эксплуатацию (выводу из эксплуатации).

4.2.3.3. На этапе эксплуатации или реконструкции опасного производственного объекта целью анализа риска может быть:

Проверка соответствия условий эксплуатации требованиям промышленной безопасности;

Уточнение информации об основных опасностях и рисках (в том числе при декларировании промышленной безопасности);

Совершенствование инструкций по эксплуатации и техническому обслуживанию, планов ликвидации (локализации) аварийных ситуаций на опасном производственном объекте;

Оценка эффекта изменения в организационных структурах, приемах практической работы и технического обслуживания в отношении совершенствования системы управления промышленной безопасностью.

4.2.4. При выборе методов анализа риска следует учитывать цели, задачи анализа, сложность рассматриваемых объектов, наличие необходимых данных и квалификацию привлекаемых для проведения анализа специалистов. Приоритетными в использовании являются методические материалы, согласованные или утвержденные Госгортехнадзором России или иными федеральными органами исполнительной власти.

4.2.5. На этапе планирования выявляются управленческие решения, которые должны быть приняты, а также требующиеся для этого исходные и выходные данные.

4.2.6. Основным требованием к выбору или определению критерия приемлемого риска является его обоснованность и определенность. При этом критерии приемлемого риска могут задаваться нормативной документацией, определяться на этапе планирования анализа риска и/или в процессе получения результатов анализа. Критерии приемлемого риска следует определять исходя из совокупности условий, включающих определенные требования безопасности и количественные показатели опасности. Условие приемлемости риска может выражаться в виде условий выполнения определенных требований безопасности, в том числе количественных критериев.

Основой для определения критериев приемлемого риска являются:

Нормы и правила промышленной безопасности или иные документы по безопасности в анализируемой области;

Сведения о произошедших авариях, инцидентах и их последствиях;

Опыт практической деятельности;

Социально-экономическая выгода от эксплуатации опасного производственного объекта;

4.3. Идентификация опасностей

4.3.1. Основные задачи этапа идентификации опасностей – выявление и четкое описание всех источников опасностей и путей (сценариев) их реализации. Это ответственный этап анализа, так как не выявленные на этом этапе опасности не подвергаются дальнейшему рассмотрению и исчезают из поля зрения.

4.3.2. При идентификации следует определить, какие элементы, технические устройства, технологические блоки или процессы в технологической системе требуют более серьезного анализа и какие представляют меньший интерес с точки зрения безопасности.

4.3.3. Результатом идентификации опасностей являются:

Перечень нежелательных событий,

Описание источников опасности, факторов риска, условий возникновения и развития нежелательных событий (например, сценариев возможных аварий);

Предварительные оценки опасности и риска 1 .

4.3.4. Идентификация опасностей завершается также выбором дальнейшего направления деятельности. В качестве вариантов дальнейших действий может быть:

Решение прекратить дальнейший анализ ввиду незначительности опасностей или достаточности полученных предварительных оценок 2 ;

Решение о проведении более детального анализа опасностей и оценки риска;

1 Например, при идентификации опасности, при необходимости, могут быть представлены показатели опасности применяемых веществ, оценки последствий для отдельных сценариев аварий и т.п.

2 В этом случае под идентификацией опасностей подразумевается анализ или оценка опасностей

4.4. Оценка риска

4.4.1. Основные задачи этапа оценки риска связаны с:

1) определением частот возникновения инициирующих и всех нежелательных событий;

2) оценкой последствий возникновения нежелательных событий;

3) обобщением оценок риска.

4.4.2. Для определения частоты нежелательных событий рекомендуется использовать:

Статистические данные по аварийности и надежности технологической системы, соответствующие специфике опасного производственного объекта или виду деятельности;

Логические методы анализа «деревьев событий», «деревьев отказов», имитационные модели возникновения аварий в человеко-машинной системе;

Экспертные оценки путем учета мнения специалистов в данной области.

4.4.2. Оценка последствий включает анализ возможных воздействий на людей, имущество и/или окружающую природную среду. Для оценки последствий необходимо оценить физические эффекты нежелательных событий (отказы, разрушение технических устройств, зданий, сооружений, пожары, взрывы, выбросы токсичных веществ и т.д.), уточнить объекты, которые могут быть подвергнуты опасности. При анализе последствий аварий необходимо использовать модели аварийных процессов и критерии поражения, разрушения изучаемых объектов воздействия, учитывать ограничения применяемых моделей. Следует также учитывать и, по возможности, выявить связь масштабов последствий с частотой их возникновения.

4.4.3. Обобщенная оценка риска (или степень риска) аварий должна отражать состояние промышленной безопасности с учетом показателей риска от всех нежелательных событий, которые могут произойти на опасном производственном объекте, и основываться на результатах:

Интегрирования показателей рисков всех нежелательных событий (сценариев аварий) с учетом их взаимного влияния;

Анализа неопределенности и точности полученных результатов;

Анализа соответствия условий эксплуатации требованиям промышленной безопасности и критериям приемлемого риска.

При обобщении оценок риска следует, по возможности, проанализировать неопределенность и точность полученных результатов. Имеется много неопределенностей, связанных с оценкой риска. Как правило, основными источниками неопределенностей являются неполнота информации по надежности оборудования и человеческим ошибкам, принимаемые предположения и допущения используемых моделей аварийного процесса. Чтобы правильно интерпретировать результаты оценки риска, необходимо понимать характер неопределенностей и их причины. Источники неопределенности следует идентифицировать (например, «человеческий фактор»), оценить и представить в результатах.

4.5.2. Меры по уменьшению риска могут иметь технический и (или) организационный характер. В выборе типа меры решающее значение имеет общая оценка действенности и надежности мер, оказывающих влияние на риск, а так же размер затрат на их реализацию.

4.5.3. На стадии эксплуатации опасного производственного объекта организационные меры могут компенсировать ограниченные возможности для принятия крупных технических мер по уменьшению риска.

4.5.4. При разработке мер по уменьшению риска, необходимо учитывать, что вследствие возможной ограниченности ресурсов, в первую очередь должны разрабатываться простейшие и связанные с наименьшими затратами рекомендации, а также меры на перспективу.

4.5.5. В большинстве случаев первоочередными мерами обеспечения безопасности, как правило, являются меры предупреждения аварии. Выбор планируемых для внедрения мер безопасности имеет следующие приоритеты:

1). меры уменьшения вероятности возникновения аварийной ситуации, включающие:

Меры уменьшения вероятности возникновения инцидента,

Меры уменьшения вероятности перерастания инцидента в аварийную ситуацию;

2). меры уменьшения тяжести последствий аварии, которые, в свою очередь, имеют следующие приоритеты:

Меры, предусматриваемые при проектировании опасного объекта (например, выбор несущих конструкций, запорной арматуры);

Меры, относящиеся к системам противоаварийной защиты и контроля (например, применение газоанализаторов),

Меры, касающиеся готовности эксплуатирующей организации к локализации и ликвидации последствий аварий.

4.5.6. При необходимости обоснования и оценки эффективности предлагаемых мер уменьшения риска рекомендуется придерживаться двух альтернативных целей их оптимизации:

1) при заданных средствах обеспечить максимальное снижение риска эксплуатации опасного производственного объекта;

2) обеспечить снижение риска до приемлемого уровня при минимальных затратах.

4.5.7. Для определения приоритетности выполнения мер по уменьшению риска в условиях заданных средств или ограниченности ресурсов следует:

Определить совокупность мер, которые могут быть реализованы при заданных объемах финансирования;

Ранжировать эти меры по показателю «эффективность-затраты»;

Обосновать и оценить эффективность предлагаемых мер.

5. Методы проведения анализа риска

5.1. При выборе методов проведения анализа риска необходимо учитывать этапы функционирования объекта (проектирование, эксплуатация и т.д.), цели анализа, критерии приемлемого риска, тип анализируемого опасного производственного объекта и характер опасности, наличие ресурсов для проведения анализа, опыт и квалификацию исполнителей, наличие необходимой информации и другие факторы.

Так, на стадии идентификации опасностей и предварительных оценок риска 1 рекомендуется применять методы качественные анализа и оценки риска, опирающиеся на продуманную процедуру, специальные вспомогательные средства (анкеты, бланки, опросные листы, инструкции) и практический опыт исполнителей.

1 Эта стадия может именоваться как анализ опасностей

Практика показывает, что использование сложных количественных методов анализа риска зачастую дает значение показателей риска, точность которых для сложных технических систем невелика. В связи с этим проведение полной количественной оценки риска более эффективно для сравнения источников опасностей или различных вариантов мер безопасности (например, при размещении объекта), чем для составления заключения о степени безопасности объекта. Однако, количественные методы оценки риска всегда очень полезны, а в некоторых ситуациях и единственно допустимы, в частности, для сравнения опасностей различной природы, оценки последствий крупных аварий или для иллюстрации результатов.

Обеспечение необходимой информацией является важным условием проведения оценки риска. Вследствие недостатка статистической данных на практике рекомендуется использовать экспертные оценки и методы ранжирования риска, основанные на упрощенных методах количественного анализа риска. В этих подходах рассматриваемые события или элементы обычно разбиваются по величине вероятности, тяжести последствий и риска на несколько групп (или категорий, рангов), например, с высоким, промежуточным, низким или незначительным уровнем риска. При таком подходе высокий уровень риска может считаться (в зависимости от специфики объекта), неприемлемым (или требующим особого рассмотрения), промежуточный уровень риска требует выполнения программы работ по уменьшению уровня риска, низкий уровень считается приемлемым, а незначительный вообще может не рассматриваться (подробнее см. приложение 2).

5.2. При выборе и применении методов анализа риска рекомендуется придерживаться следующих требований:

Метод должен быть научно обоснован и соответствовать рассматриваемым опасностям;

Метод должен давать результаты в виде, позволяющем лучше понять формы реализации опасностей и наметить пути снижения риска;

Метод должен быть повторяемым и проверяемым.

- «Что будет, если...?»;

Проверочный лист;

Анализ опасности и работоспособности;

Анализ вида и последствий отказов;

Анализ «дерева отказов»;

Анализ «дерева событий»;

Соответствующие эквивалентные методы.

Краткие сведения о методах анализа риска и рекомендации по их применению представлены в приложении 2.

6. Требования к оформлению результатов анализа риска

6.1. Результаты анализа риска должны быть обоснованы и оформлены таким образом, чтобы выполненные расчеты и выводы могли быть проверены и повторены специалистами, которые не участвовали при первоначальном анализе.

6.2. Процесс анализа риска следует документировать. Объем и форма отчета с результатами анализа зависит от целей проведенного анализа риска. В отчет рекомендуется включать (если иное не определено нормативными правовыми документами, например, документами по оформлению деклараций промышленной безопасности):

Титульный лист,

Список исполнителей с указанием должностей, научных званий, организации,

Аннотацию,

Задачи и цели проведенного анализа риска,

Описание анализируемого опасного производственного объекта,

Методологию анализа, исходные предположения и ограничения, определяющие пределы анализа риска;

Описание используемых методов анализа, моделей аварийных процессов и обоснование их применения,

Исходные данные и их источники, в том числе данные по аварийности и надежности оборудования,

Результаты идентификации опасности,

Результаты оценки риска,

Анализ неопределенностей результатов оценки риска,

Обобщение оценок риска, в том числе с указанием наиболее «слабых мест»,

Заключение;

Перечень используемых источников информации.

Показатели риска

Всесторонняя оценка риска аварий основывается на анализе причин возникновения (отказов технических устройств, ошибок персонала, внешних воздействий) и условий развития аварий, поражения производственного персонала, населения, причинения ущерба имуществу эксплуатирующей организации или третьим лицам, вреда окружающей природной среде. Чтобы подчеркнуть, что речь идет об «измеряемой» величине, используется понятие степень риска или уровень риска. Степень риска аварий на опасном производственном объекте, эксплуатация которого связана с множеством опасностей, определяется на основе учета соответствующих показателей риска. В общем случае показатели риска выражаются в виде сочетания (комбинации) вероятности (или частоты) и тяжести последствий рассматриваемых нежелательных событий.

Ниже даны краткие характеристики основных количественных показателей риска.

1. При анализе опасностей, связанных с отказами технических устройств, выделяют технический риск , показатели которого определяются соответствующими методами теории надежности.

2. Одной из наиболее часто употребляющихся характеристик опасности является индивидуальный риск – частота поражения отдельного индивидуума (человека) в результате воздействия исследуемых факторов опасности. В общем случае количественно (численно) индивидуальный риск выражается отношением числа пострадавших людей к общему числу рискующих за определенный период времени. При расчете распределения риска по территории вокруг объекта («картировании риска») индивидуальный риск определяется потенциальным территориальным риском (см. ниже) и вероятностью нахождения человека в районе возможного действия опасных факторов. Индивидуальный риск во многом определяется квалификацией и готовностью индивидуума к действиям в опасной ситуации, его защищенностью. Индивидуальный риск, как правило, следует определять не для каждого человека, а для групп людей, характеризующихся примерно одинаковым временем пребыванием в различных опасных зонах и использующих одинаковые средства защиты. Рекомендуется оценивать индивидуальный риск отдельно для персонала объекта и для населения прилегающей территории, или, при необходимости, для более узких групп, например, для рабочих различных специальностей.

1.3. Другим комплексным показателем риска, характеризующим пространственное распределение опасности по объекту и близлежащей территории, является потенциальный территориальный риск – частота реализации поражающих факторов в рассматриваемой точке территории. Потенциальный территориальный, или потенциальный риск не зависит от факта нахождения объекта воздействия (например, человека) в данном месте пространства. Предполагается, что условная вероятность нахождения объекта воздействия равна 1 (т.е. человек находится в данной точке пространства в течение всего рассматриваемого промежутка времени). Потенциальный риск не зависит от того, находится ли опасный объект в многолюдном или пустынном месте и может меняться в широком интервале. Потенциальный риск, в соответствии с названием, выражает собой потенциал максимально возможной опасности для конкретных объектов воздействия (реципиентов), находящихся в данной точке пространства. Как правило, потенциальный риск оказывается промежуточной мерой опасности, используемой для оценки социального и индивидуального риска при крупных авариях. Распределения потенциального риска и распределение населения в исследуемом районе позволяет получить количественную оценку социального риска для населения. Для этого нужно определить число пораженных при каждом сценарии от каждого источника опасности и затем определить зависимость частоты событий (F), в которых пострадало на том или ином уровне число людей, больше определенного (N), от этого определенного числа людей (социальный риск).

1.4. Социальный риск характеризует масштаб и вероятность (частоту) аварий и определяется функцией распределения потерь (ущерба), у которой есть установившееся название - F/N-кривая 1 . В общем случае в зависимости от задач анализа под N можно понимать и общее число пострадавших, и число смертельно травмированных или другой показатель тяжести последствий. Соответственно, критерий приемлемой риска будет определяться уже не числом для отдельного события, а кривой, построенной для различных сценариев аварии с учетом их вероятности. В настоящее время общераспространенным подходом для определения приемлемости риска является использование двух кривых, когда, например, в логарифмических координатах определены F/N-кривые приемлемого и неприемлемого риска смертельного травмирования. Область между этими кривыми определяет промежуточную степень риска, вопрос о снижении которой следует решать, исходя из специфики производства и региональных условий.

1 в зарубежных работах именуется как кривая Фармера

1.5. Другой количественной интегральной мерой опасности объекта является коллективный риск , определяющий ожидаемое количество пострадавших в результате аварий на объекте за определенный период времени.

1.6. Для целей экономического регулирования промышленной безопасности и страхования важным является такой показатель риска, как статистически ожидаемый ущерб в стоимостных или натуральных показателях (математическое ожидание ущерба или сумма произведений вероятностей причинения ущерба за определенный период на соответствующие размеры этих ущербов).

Характеристика методов анализа риска

Ниже представлена краткая характеристика основных методов, рекомендуемых для проведения анализа риска.

1. Методы «Проверочного листа» и «Что будет, если...?» или их комбинация относятся к группе методов качественных оценок опасности, основанных на изучении соответствия условий эксплуатации объекта или проекта требованиям промышленной безопасности.

Результатом проверочного листа является перечень вопросов и ответов о соответствии опасного производственного объекта требованиям промышленной безопасности и указания по их обеспечению. Метод проверочного листа отличается от «Что будет, если...?» более обширным представлением исходной информации и представлением результатов о последствиях нарушений безопасности.

Эти методы наиболее просты (особенно при обеспечении их вспомогательными формами, унифицированными бланками, облегчающими на практике проведение анализа и представление результатов), нетрудоемки (результаты могут быть получены одним специалистом в течение одного дня) и наиболее эффективны при исследовании безопасности объектов с известной технологией.

2. «Анализ вида и последствий отказов» (АВПО) применяется для качественного анализа опасности рассматриваемой технической системы 1 . Существенной чертой этого метода является рассмотрение каждого аппарата (установки, блока, изделия) или составной части системы (элемента) на предмет того, как он стал неисправным (вид и причина отказа) и какое было бы воздействие отказа на техническую систему.

1 Под технической системой в зависимости от целей анализа могут пониматься как совокупность технических устройств, так и отдельные технические устройства или их элементы.

Анализ вида и последствий отказа можно расширить до количественного анализа вида, последствий и критичности отказа (АВПКО). В этом случае каждый вид отказа ранжируется с учетом двух составляющих критичности – вероятности (или частоты) и тяжести последствий отказа. Определение параметров критичности необходимо для выработки рекомендаций и приоритетности мер безопасности.

Результаты анализа представляются в виде таблиц с перечнем оборудования, видом и причин возможных отказов, частотой, последствиями, критичностью, средствами обнаружения неисправности (сигнализаторы, приборы контроля и т.п.) и рекомендациями по уменьшению опасности.

Систему классификации отказов по критериям вероятности-тяжести последствий следует конкретизировать для каждого объекта или технического устройства с учетом его специфики.

Ниже (Таблица 1) в качестве примера приведены показатели (индексы) уровня и критерии критичности по вероятности и тяжести последствий отказа. Для анализа выделены четыре группы, которым может быть нанесен ущерб от отказа: персонал, население, имущество (оборудование, сооружения, здания, продукция и т.п.), окружающая среда.

В таблице 2 применены следующие варианты критериев:

Критерии отказов по тяжести последствий:

Катастрофический отказ – приводит к смерти людей, существенному ущербу имуществу, наносит невосполнимый ущерб окружающей среде,

Критический/некритический отказ – угрожает/не угрожает жизни людей, приводит(не приводит) к существенному ущербу имуществу, окружающей среде,

Отказ с пренебрежимо малыми последствиями – отказ, не относящийся по своим последствиям ни к одной из первых трех категорий.

- «А» - обязателен количественный анализ риска, или требуются особые меры обеспечения безопасности;

- «В» – желателен количественный анализ риска, или требуется принятие определенных мер безопасности;

- «Д» – анализ и принятие специальных (дополнительных) мер безопасности не требуется.

Методы АВПО, АВПКО применяются, как правило, для анализа проектов сложных технических систем или технических решений. Выполняется группой специалистов различного профиля (например, специалист по технологии, химическим процессам, инженер-механик) из 3 ‑ 7 человек в течение нескольких дней, недель.

Таблица 1

Матрица «вероятность-тяжесть последствий

Частота возникновения Тяжесть последствий отказов
отказа 1/год катастрофи-

ческий отказ

критический отказ некритический отказ отказ с пренебрежимо малыми последствиями
Частый отказ >1 А А А С
Вероятный отказ 1 - 10 -2 А А В С
Возможный отказ 10 -2 - 10 -4 А В В С
Редкий отказ 10 -4 - 10 -6 А В С Д
Практически невероятный отказ <10 -6 В С С Д

3. В методе «Анализ опасности и работоспособности» (АОР) исследуется влияние отклонений технологических параметров (температуры, давления и пр.) от регламентных режимов с точки зрения возможности возникновения опасности. АОР по сложности и качеству результатов соответствует уровню АВПО, АВПКО.

В процессе анализа для каждой составляющей опасного производственного объекта или технологического блока определяются возможные отклонения, причины и указания по их недопущению. При характеристике отклонения используются ключевые слова «нет», «больше», «меньше», «также как», «другой», «иначе чем», «обратный» и т.п. Применение ключевых слов помогает исполнителям выявить все возможные отклонения. Конкретное сочетание этих слов с технологическими параметрами определяется спецификой производства.

«НЕТ» – отсутствие прямой подачи вещества, когда она должна быть;

«БОЛЬШЕ (МЕНЬШЕ)» – увеличение (уменьшение) значений режимных переменных по сравнению с заданными параметрами (температуры, давления, расхода);

«ТАКЖЕ КАК» – появление дополнительных компонентов (воздух, вода, примеси);

«ДРУГОЙ» – состояние, отличающиеся от обычной работы (пуск, остановка, повышение производительности и т.д.);

«ИНАЧЕ ЧЕМ» – полное изменение процесса, непредвиденное событие, разрушение, разгерметизация оборудования;

«ОБРАТНЫЙ» – логическая противоположность замыслу, появление обратного потока вещества.

Результаты анализа представляются на специальных технологических листах (таблицах). Степень опасности отклонений может быть определена количественно путем оценки вероятности и тяжести последствий рассматриваемой ситуации по критериям критичности аналогично методу АВПКО (Таблица 1).

Отметим, что метод АОР, также как АВПКО, кроме идентификации опасностей и их ранжирования позволяет выявить неясности и неточности в инструкциях по безопасности и способствует их дальнейшему совершенствованию. Недостатки методов связаны с затрудненностью их применения для анализа комбинаций событий, приводящих к аварии.

4. Практика показывает, что крупные аварии, как правило, характеризуются комбинацией случайных событий, возникающих с различной частотой на разных стадиях возникновения и развития аварии (отказы оборудования, ошибки человека, нерасчетные внешние воздействия, разрушение, выброс, пролив вещества, рассеяние веществ, воспламенение, взрыв, интоксикация и т.д.). Для выявления причинно-следственных связей между этими событиями используют логико-графические методы анализа «деревьев отказов» и «деревьев событий» .

При анализе «деревьев отказов» (АДО) выявляются комбинации отказов (неполадок) оборудования, инцидентов, ошибок персонала и нерасчетных внешних (техногенных, природных) воздействий, приводящих к головному событию (аварийной ситуации). Метод используется для анализа возможных причин возникновения аварийной ситуации и расчета ее частоты (на основе знания частот исходных событий). При анализе дерева отказа (аварии) рекомендуется определять минимальные сочетания событий, определяющие возникновение или невозможность возникновения аварии (минимальное пропускное и отсечное сочетания, соответственно, см. пример 2 приложения 3).

Анализ «дерева событий» (АДС) – алгоритм построения последовательности событий, исходящих из основного события (аварийной ситуации). Используется для анализа развития аварийной ситуации. Частота каждого сценария развития аварийной ситуации рассчитывается путем умножения частоты основного события на условную вероятность конечного события (например, аварии с разгерметизацией оборудования с горючим веществом в зависимости от условий могут развиваться как с воспламенением, так и без воспламенения вещества).

5. Методы количественного анализа риска , как правило, характеризуются расчетом нескольких показателей риска, упомянутых в приложении 1, и могут включать один или несколько вышеупомянутых методов (или использовать их результаты). Проведение количественного анализа требует высокой квалификации исполнителей, большого объема информации по аварийности, надежности оборудования, проведения экспертных работ, учета особенностей окружающей местности, метеоусловий, времени пребывания людей в опасных зонах и других факторов.

Количественный анализ риска позволяет оценивать и сравнивать различные опасности по единым показателям и наиболее эффективен:

На стадии проектирования и размещения опасного производственного объекта;

При обосновании и оптимизации мер безопасности;

При оценке опасности крупных аварий на опасных производственных объектах, имеющих однотипные технические устройства (например, магистральные трубопроводы);

При комплексной оценке опасностей аварий для людей, имущества и окружающей природной среды.

В таблице 1 приняты следующие обозначения:

«0» – наименее подходящий метод анализа;

«++» – наиболее подходящий метод.

Методы могут применяться изолированно или в дополнение друг к другу, причем методы качественного анализа могут включать количественные критерии риска (в основном, по экспертным оценкам с использованием, например, матрицы «вероятность ‑ тяжесть последствий» ранжирования опасности). По возможности полный количественный анализа риска должен использовать результаты качественного анализа опасностей.

Примеры применения некоторых методов анализа риска приведены в приложении 3.

Примеры применения методов анализа опасности и оценки риска

Пример 1. Применение метода качественного анализа опасности

В таблице представлены фрагмент результатов анализа опасности и работоспособности цеха холодильно-компрессорных установок. В процессе анализа для каждой установки, производственной линии или блока определяются возможные отклонения, причины и рекомендации по обеспечению безопасности. При характеристике каждого возможного отклонения используются ключевые слова «нет", "больше", "меньше", "так же как", "другой", "иначе чем", "обратный" и т.п. В таб. представлены также экспертные балльные оценки вероятности возникновения рассматриваемого отклонения В, тяжести последствий Т и показателя критичности К=В+Т. Показатели В и Т определялись по 4-х балльной шкале (балл равный 4 соответствует максимальной опасности).

Отклонения, имеющие повышенные значения критичности, далее рассматривались более детально, в том числе при построении сценариев аварийных ситуаций и количественной оценки риска.

Таблица 3

Перечень отклонений при применении метода изучения опасности и работоспособности компрессорного узла цеха холодильно-компрессорных установок

(фрагмент результатов)

Ключевое слово Отклонение Причины Последствия В Т К Рекомендации
меньШЕ Нет потока вещества 1.Разрыв трубопровода Выброс аммиака 2 4 6 Установить систему аварийной сигнализации
2.Отказ в системе э/питания Опасности нет 3 1 4 Повысить надежность системы резервирования
БОЛЬШЕ ПОВЫШЕНИЕ ДАВЛЕНИЯ НАГНЕТАНИЯ КОМПРЕССОРА 3.Закрыт нагнетательный вентиль Разрушение компрессора и выброс аммиака 1 2 3 Заменить реле давления, предохранитель-

ный и обратные клапана

4.Отсутствует или недостаточная подача воды на конденсатор Как в п.3 1 2 3
5.Наличие большого количества воздуха в конденсаторе Образование взрывоопасной смеси 1 3 4
ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ НАГНЕТАТЕЛЬ-

НОГО КОМПРЕССОРА

6.Нет протока воды через охлаждаемую рубашку компрессора Разрушение компрессора с выбросом аммиака 1 2 3 Установить реле температуры на компрессорах ВД и НД,
7.Чрезмерный перегрев паров аммиака на всасывании Как в п.6 1 2 3
МЕНЬШЕ ПОНИЖЕНИЕ ДАВЛЕНИЯ ВСАСЫВАНИЯ 8.Повышенная производитель-

ность компрессора

Опасности нет 1 1 2 Проверить реле давления

Пример 2. Анализ «деревьев отказов и событий».

Пример дерева событий для количественного анализа различных сценариев аварий на установке переработки нефти представлен на рис.2. Цифры рядом с наименованием события показывают условную вероятность возникновения этого события. При этом вероятность возникновения инициирующего события (выброс нефти из резервуара) принята равной 1. Значение частоты возникновения отдельного события или сценария пересчитывается путем умножения частоты возникновения инициирующего события на условную вероятность развития аварии по конкретному сценарию.


Прекращение горения или ликвидация аварии
0,02
Факельное горение струи
0,04
0,02
с Мгновенным воспламенением
0,05 ЭФФЕКТА «ДОМИНО» НЕТ
0,001
«Огненный шар»
0,01 Разрушение соседнего оборудования
0,009
выброс нефти Ликвидация аварии
1,0 0,35
Нет воспламенения
0,45
Отсутствие источника
Без мгновенного воспламенения 0,10
0,95 Пожар пролива
0,10
Воспламенение нефти
0,50
Горение или взрыв облака
0,40

Рис. 2. «Дерево событий» аварий на установке первичной переработки нефти.


Пример дерева отказа 1 , используемого для анализа причин возникновения аварийных ситуаций при автоматизированной заправке емкости приведен на рис.3. Структура дерева отказа включает одно головное событие (авария, инцидент), которое соединяется с набором соответствующих нижестоящих событий (ошибок, отказов, неблагоприятных внешних воздействий), образующих причинные цепи (сценарии аварий). Для связи между событиями в «узлах» деревьев используются знаки «И» и «ИЛИ». Логический знак «И» означает, что вышестоящее событие возникает при одновременном наступлении нижестоящих событий (соответствует перемножению их вероятностей для оценки вероятности вышестоящего события). Знак «ИЛИ» означает, что вышестоящее событие может произойти вследствие возникновения одного из нижестоящих событий.

1 В отечественной литературе встречаются и иные наименования этого дерева: дерево отказов, дерево неполадок, дерево происшествий и т.п.

Пролив горючего (переполнения емкости) по причине излишне продолжительной работы насосов из-за их неотключения вовремя
или
Команда на отключение не поступила Команда на отключение не осуществлена
и
САВД не выдала команды Оператор не выдал команды
или
Оператор не пытался
или отключить насосы
или
Отказ средств передачи сигналов Отказ средств выдачи сигналов Оператор не среагировал на отказ САВД Оператор не смог отключить насосы вовремя
или и или или или
1 2 3 4 5 6 7 8 9 10 11 12 13

Рис.3. «Дерево отказа» заправочной операции.

Так, дерево, представленная на рис. 3, имеет промежуточные события (прямоугольники), тогда как в нижней части дерева кругами с цифрами показаны постулируемые исходные события-предпосылки, наименования и нумерация которых приведены в табл. 4.

Таблица 4. Исходные события дерева отказа (рис.3).

Наименование событий или состояний модели

Вероятность события P i

1 Система автоматической выдачи дозы (САВД) оказалась отключенной (ошибка контроля исходного положения) 0,0005
2 Обрыв цепей передачи сигнала от датчиков объема дозы 0,00001
3 Ослабление сигнала выдачи дозы помехами (нерасчетное внешнее воздействие) 0,0001
4 Отказ усилителя-преобразователя сигнала выдачи дозы 0,0002
5 Отказ расходомера 0,0003
6 Отказ датчика уровня 0,0002
7 Оператор не заметил световой индикации о неисправности САВД (ошибка оператора) 0,005
8 Оператор не услышал звуковой сигнализации об отказе САВД (ошибка оператора) 0,001
9 Оператор не знал о необходимости отключения насоса по истечении заданного времени 0,001
10 Оператор не заметил индикации хронометра об истечении установленного времени заправки 0,004
11 Отказ хронометра 0,00001
12 Отказ автоматического выключателя электропривода насоса 0,00001
13 Обрыв цепей управления приводом насоса 0,00001

Анализ дерева отказа позволяет выделить ветви прохождения сигнала к головному событию (в нашем случае на рис.3 их три), а так же указать связанные с ними

минимальные пропускные сочетания,

минимальные отсечные сочетания.

Минимальные пропускные сочетания это набор исходных событий - предпосылок (отмечены цифрами), обязательное (одновременное) возникновение которых достаточно для появления головного события (аварии). Для «дерева», отображенного на рис.3, такими событиями и/или сочетаниями являются: {12}, {13}, {1·7}, {1·8}, {1·9}, {1·10}, {1·11}, {2·7}, {2·8}, {2·9}, {2·10}, {2·11}, {3·7}, {3·8}, {3·9}, {3·10}, {3·11}, {4·7}, {4·8}, {4·9}, {4·10}, {4·11}, {5·6·7}, {5·6·8}, {5·6·9}, {5·6·10}, {5·6·11}.

Используются главным образом для выявления «слабых мест».

Минимальные отсечные сочетания - набор исходных событий, который гарантирует отсутствие головного события при условии не возникновения ни одного из составляющих этот набор событий:

{1·2·3·4·5·12·13}, {1·2·3·4·6·12·13}, {7·8·9·10·11·12·13}.

Используются главным образом для определения наиболее эффективных мер предупреждения аварии.

Пример 3. Распределение потенциального территориального риска

Распределение потенциального территориального риска, показывающего максимальное значение частоты поражения человека от возможных аварий для каждой точки площадки объекта и прилегающей территории, показано на рис. 4. Цифрами у изолиний указана частота смертельного поражения человека за один год (при условии его постоянного местонахождения в данной точке).

Рис. 4. Распределение потенциального риска по территории вблизи объекта, на котором возможны аварии с крупным выбросом токсичных веществ. Цифрами у изолиний показано значение частоты гибели человека (1/год), А – граница зон поражения людей, рассчитанных для сценариев аварии с одинаковой массой выброса по всем направлениям ветра, Б – зона поражения для отдельного сценария при заданном направлении ветра.

Пример 4. Количественные показатели риска аварий на магистральных нефтепроводах

В соответствии с «Методическим руководством по оценке степени риска аварий на магистральных нефтепроводах» основными показателями риска являются интегральные (по всей длине трассы нефтепровода) и удельные (на единицу длины нефтепровода) значения:

Частоты утечки нефти в год;

Ожидаемых среднегодовых площадей разливов и потерь нефти от аварий;

Ожидаемого ущерба (как суммы ежегодных компенсационных выплат за загрязнение окружающей среды и стоимости потерянной нефти).

На рис.5 представлено распределение ожидаемого ущерба вдоль трассы нефтепровода.


Rd(L), руб./год

Рис. 5. Распределение ожидаемого ущерба Rd(L) по трассе магистрального нефтепровода (км)

Оценки риска могут быть использованы при обосновании страховых тарифов при страховании ответственности за ущерб окружающей среде от аварий и выработке мер безопасности. В частности, линейные участки нефтепроводов с наиболее высокими показателями риска должны быть приоритетными при проведении внутритрубной диагностики или ремонта трубопроводов.