Для чего нужны разрядники на подстанции. Назначение разрядников. Ориентиры подбора ограничителей

Назначение разрядников

Разрядники являются защитными аппаратами. Они предназначены для защиты изоляции электрооборудования от перенапряжений. В распределительных устройствах электроустановок применяются вентильные разрядники, на линиях электропередачи - трубчатые. Вентильные разрядники состоят из искровых промежутков, включенных последовательно с рабочим резистором, имеющим нелинейную вольт-амперную характеристику. В некоторых разрядниках параллельно искровым промежуткам присоединяют шунтирующие резисторы для равномерного распределения напряжения между ними. В условных обозначениях разрядников буквы означают: Р - разрядник; В - вентильный, П - подстанционный (поляризованный для разрядников постоянного тока); С - станционный; М - с магнитным дутьем; О - облегченной конструкции; У - униполярный; К - для ограничения коммутационных перенапряжений. Цифры, следующие за буквами в обозначении, означают напряжения разрядника. Разрядники характеризуются рядом параметров. Класс напряжения разрядника - номинальное значение напряжения сети, для работы в которой разрядник предназначен. Наибольшее допустимое напряжение разрядника - эффективное значение наибольшего гарантированного заводом-изготовителем напряжения, при котором разрядник надежно гасит дугу. Пробивное напряжение разрядника- наибольшая величина плавно нарастающего напряжения в момент пробоя разрядника. Импульсное пробивное напряжение разрядника - наибольшая величина импульсного напряжения в момент пробоя разрядника при заданном значении предразрядного времени. Предразрядное время - время от начала нарастания импульсного напряжения до момента пробоя разрядника. Номинальный разрядный ток разрядника - амплитудное значение импульсного тока, который проходит через разрядник после его пробоя. Ток проводимости разрядника, искровые промежутки которого шунтированы резисторами, - ток, проходящий через разрядник при приложении к нему напряжения постоянного тока заданной величины. У разрядников, не имеющих шунтирующих резисторов, измеряемый при этом ток называется током утечки. Вентильные разрядники переменного тока служат основным средством ограничения перенапряжений и защиты от них.

Разрядник РВП-6 показан на рис. 1. Он состоит из многократных искровых промежутков 12 и последовательно включенных нелинейных вилитовых резисторов б, размещенных в фарфоровом корпусе 7 и сжатых спиральной пружиной 3. Блок многократных искровых промежутков включает несколько последовательно соединенных единичных искровых промежутков, помещенных в бумажно-бакслитовый цилиндр 4. Единичный искровой промежуток состоит из двух фигурных латунных электродов, приклеенных к изоляционной меканитовой или электрокартонной прокладке. Нелинейный последовательный резистор набирается из вилитовых (вилит-запеченная смесь карборунда с жидким стеклом), обладающих вентильными свойствами, то есть сопротивление карборунда изменяется в зависимости от приложенного к нему напряжения: чем выше приложенное напряжение, тем ниже его сопротивление, и наоборот. Количество искровых промежутков в блоке и вилитовых дисков в колонке зависит от величины номинального напряжения разрядника. Плоскости, которыми соприкасаются диски, для лучшего контакта металлизируют алюминием, а боковые поверхности вилитовых дисков для преграждения пути токам утечки покрывают изолирующей обмазкой. Для предотвращения смещения вилитовых дисков ставятся фетровые или войлочные прокладки 5. Вилит невлагостоек и при отсыревании его вентильные свойства ухудшаются. Поэтому разрядник герметизируется уплотнением 2 из озоностойкой резины и закрывается сверху металлическим колпаком 13. К несущей конструкции разрядник присоединяется хомутом 11, к токоведущим проводам - болтом 1, а к заземлению - шпилькой 9. Таким образом, разрядник включается между фазой электроустановки и контуром заземления параллельно защищаемой изоляции. Рис. 1. Разрядник типа РВП-6 В нормальном режиме работы искровые промежутки обеспечивают изоляцию между фазой и землей. Как только возникает перенапряжение, опасное для изоляции электроустановки, происходит пробой искровых промежутков, в результате чего сеть оказывается соединена с землей через вилитовые диски. В это момент к вилитовым дискам прикладывается максимальное напряжение, поэтому сопротивление их будет наименьшим, а ток замыкания на землю - наибольшим. В результате разряда на землю напряжение в сети снижается, а сопротивление вилитовых дисков возрастает. Дуга переменного тока при прохождении через нуль гаснет, а затем вновь восстанавливается. Когда напряжение, приложенное к разряднику, оказывается недостаточным для поддержания дуги на искровых промежутках, при первом же прохождении тока через нуль его протекание через разрядник прекращается. Модернизированный разрядник РВП с уменьшенным диаметром искровых промежутков и вилитовых дисков со сниженными габаритами и массой выпускается под наименованием РВО (разрядник вентильный облегченной конструкции).

2. Разрядник типа РВС Вентильный разрядник РВС (разрядник вентильный станционный) выпускается в виде пяти стандартных элементов: РВС-15, РВС-20, РВС-30, РВС-33 и РВС-35. Из этих элементов комплектуют разрядники на напряжение до 220 кВ. Их устанавливают один на другой и соединяют последовательно. На рис. 2 показан элемент РВС, состоящий из фарфорового кожуха 1, внутри которого находятся вилитовые диски 2 и комплекты искровых промежутков 4, состоящие из нескольких единичных искровых промежутков 3. Каждый комплект заключен в фарфоровый цилиндр 5. Все искровые промежутки и вилитовые диски сжаты спиральными пружинами 6. Фарфоровый кожух закрыт с торцевых сторон крышками, под которыми проложена уплотняющая резина 7. Фарфоровый кожух армирован фланцами 8, которые служат для крепления разрядника к опорной конструкции, а также для присоединения к шинам или проводам. Комплекты искровых промежутков шунтируются подковообразными резисторами 9, предназначенными для равномерного распределения напряжения между ними. На рис. 3 показан комплект искровых промежутков, состоящий из четырех единичных искровых промежутков. Каждый единичный искровой промежуток включает в себя два фигурных латунных электрода 4, разделенных миканитовой прокладкой. Искровые промежутки размещаются в фарфоровом цилиндре 3, закрытом сверху и снизу латунными крышками 1. К последним присоединяются подковообразные шунтирующие резисторы 2, изготовленные на основе карбоцида. Рис. 3. Комплект искровых промежутков разрядника Рис. 4. Блок искровых промежутков разрядника типа РВМ На напряжение 35-500 кВ нашли применение разрядники магнитовентильные типа РВМ. Они отличаются от других типов разрядников наличием блоков магнитных искровых промежутков (рис. 4). Такие стандартные блоки искровых промежутков, дополненные дисковыми вилитовыми резисторами изготовляются на напряжение 35 кВ. Блок магнитных искровых промежутков состоит из набора единичных искровых промежутков 2, разделенных между собой кольцевыми магнитами 3. Единичный искровой промежуток составляется из двух концентрически расположенных медных электродов 6 и 8, между которыми образуется кольцевая щель 7. Возникающая в щели дуга вращается под действием постоянных магнитов с большой скоростью, что способствует ее быстрому гашению Набор из постоянных магнитов и единичных искровых промежутков помещается внутри фарфоровой покрышки 1, закрытой стальными крышками 5. Магниты и медные электроды плотно сжимаются стальной пружиной 4.

Ограничители перенапряжения нелинейные серии ОПН с полимерной (кремнеорганической) изоляцией предназначены для защиты от коммутационных и атмосферных перенапряжений изоляции электрооборудования подстанций и сетей на все классы напряжения. Ограничители перенапряжения устанавливаются в сетях переменного тока частотой 48-62 Гц с любой системой заземления нейтрали и включаются параллельно защищаемому объекту. Ограничитель перенапряжения нелинейный серии ОПН - это разрядник без искровых промежутков. Активная часть ОПН состоит из последовательного набора варисторов. Принцип действия ОПН основан на том, что проводимость варисторов нелинейно зависит от приложенного напряжения. В нормальном режиме ОПН не пропускает ток, но как только на участке сети возникает перенапряжение, сопротивление ОПН резко снижается, чем и обуславливается эффект защиты от перенапряжения. После прохождения разряда через ОПН, его сопротивление опять возрастает. Переход из "закрытого" в "открытое" состояния занимает меньше 1 наносекунды (в отличие от разрядников с искровыми промежутками, у которых это время равняется нескольким микросекундам). Кроме быстроты срабатывания ОПН обладает еще рядом преимуществ. Одним из них является стабильность характеристики варисторов после неоднократного срабатывания вплоть до окончания указанного времени эксплуатации, что, кроме прочего, устраняет необходимость в эксплуатационном обслуживании. По сравнению с вентильными разрядниками ограничители перенапряжений обладают следующими преимуществами:

    Глубокий уровень ограничения всех видов перенапряжений;

    Отсутствие сопровождающего тока после затухания волны перенапряжения;

    Простая конструкция и высокая надежность устройства;

    Стабильность характеристик и устойчивость к старению;

    Стойкость к атмосферным загрязнениям;

    Малые габариты, вес и стоимость по сравнению с разрядниками.

Условные обозначения ограничителя: О - ограничитель П - перенапряжений Н - нелинейный П,Ф - в полимерном, фарфоровом корпусе X - класс напряжения сети, кВ X - Наибольшее длительно допустимое рабочее напряжение, кВ X - Номинальный разрядный ток, кА X - Класс пропускной способности: 1-(250-400А), 2-(401-750A), 3-(751-1100А) и более III-степень загрязнения изоляции по ГОСТ 9920 УХЛ1 (УХЛ2) - климатическое исполнение и категория размещения по ГОСТ 15150 Пример записи обозначения ограничителя при его заказе или в технической документации другого изделия ОПНп-6/7,2/10/1(300) УХЛ1 опорно-подвесной ТУ 3414-001-56227313-2003.

Даже представить страшно загородную собственность без электроприборов. Пусть и в ночном кошмаре не снятся лучина или коромысло с корытом. Да здравствуют стиральные машины, насосы, светильники, водонагреватели и еще масса полезных изобретений, участвующих в формировании цивилизованных условий! Однако для стабильной работы оборудования оды слагать недостаточно. Нужно позаботиться о том, чтобы трудолюбивые «железные помощники» получали питание требующихся им параметров, а способ доставки энергии был надежным и предельно безопасным. Вот для этого и нужен ограничитель перенапряжения – компактный потомок устаревших разрядников.

Служебные обязанности старых и новых разрядников

Теплую симпатию Тютчева к майским грозам вряд ли смогут разделить владельцы электрооборудования. Угодивший в воздушную электролинию меткий грозовой разряд создаст в ней перенапряжение, значение которого достигает порой десятков кВ. Даже если дело не дойдет до десятков, а обойдется единицами, приборам может быть нанесен серьезный ущерб. Ведь преобладающее количество бытовых агрегатов с электронной начинкой устойчиво лишь к 1,5 кВ.

Молниеносно разбегаясь по проводке крутые волны перенапряжения способны вызвать пробой, могут перегреть изоляцию до стадии возгорания. И вовсе необязательно, чтобы разрушительная грозовая «стрела» попала в сеть рядом со строением. За пару микросекунд она преодолевает километровые расстояния. От предсказуемых последствий жильцов многоэтажек обязаны защитить электрики управляющей организации. А вот частники смогут предъявить претензии только Илье Громовержцу.

Это не единственная причина, с целью исключения которой нужна защита от перенапряжения. Аналогичную угрозу представляют:

  • коммутационные скачки, возникающие на подстанции вследствие отключающих/подключающих манипуляций с мощными потребителями;
  • броски перенапряжения, распространяемые другим оборудованием;
  • электростатические разряды, которые периодически появляются между работающими рядом устройствами.

Для того чтобы все перечисленные обстоятельства не влияли ни на работу электротехники, ни на целостность ее изоляции, были изобретены разрядники.

Функция разрядников заключалась в поглощении излишков энергии с последующим сбросом их вместе с выделившимся теплом в почву через . В списке компонентов разрядника значатся только два электрода и дугогасительный элемент. Один из электродов крепился к защищаемому объекту, второй к заземляющему контуру. Т.е. одной «рукой» разрядник ловил перенапряжение, второй – выводил его за пределы. Дугогаситель снимал возникшую в это время ионизацию, чтобы вернуть разрядник в обычное рабочее русло.

Между электродами разрядника нужно было установить четкое расстояние, именуемое искровым промежутком. Чем больше был данный интервал, тем мощнее действовала разрядная система. В результате сооружалось нечто весьма громоздкое и не всегда эффективное, потому что устройство могло внезапно ограничить поток, не успев вернуться в нормальный рабочий режим перед очередным всплеском. Потом были эпопеи с внедрением вентильных, воздушных, газовых и других типов разрядников. Каждый из них мог похвастаться технологическими плюсами, но не был полностью избавлен от недостатков.

Меньше всего технологических минусов у нового поколения разрядников – ограничителей. Ранее они были представлены блокированными устройствами, которые после повреждения приходилось полностью менять. Теперь их выпускают в модульных вариантах, невероятно удобных для защиты электропроводки загородной частной собственности.

Конструкция и специфика модульных ограничителей

Ограничители, применяемые для гашения импульсного перенапряжения, представляют собой компактные аппараты со сменными модульными элементами. Устанавливают приборы в главных и второстепенных распределительных щитках.

Обратите внимание. Использование ограничителей будет иметь смысл только при наличии системы заземления, которая требуется для вывода тепловой энергии от погашенной электромагнитной дуги.

Главный рабочий орган ограничителя – варистор. Это реостат, набранный из плотно состыкованных варисторных таблеток. Делают таблетки из смеси оксида цинка с оксидами висмута, кобальта и других металлов. Преимущество данного органа заключается в нелинейном вольт-амперном «поведении». Т.е. сопротивление устройства уменьшается с увеличением силы тока, благодаря чему:

  • прибор свободно пропускает сверхтоки и компактно гасит их без длиннющего искрового промежутка;
  • срабатывает в предельно краткий срок;
  • почти моментально возвращается к исходному изоляционному состоянию в полной готовности «принять на грудь» очередной импульсный поток.

Варистор расположен в модульной вставке, которую после выхода из строя функциональной начинки можно без мельчайших проблем заменить. Модульные устройства выпускают в широком диапазоне пропускной токовой способности, т.к. ограничители призваны осуществлятьзащиту от разных по мощности скачков напряжения.

Обратите внимание, что в случае применения комплектных ограничителей от одного производителя (например, с маркой ETITEC) допустима их параллельная установка, если требуется увеличить токовую способность. Однако желательно изначально подбирать аппарат с требующимися характеристиками.

Ограничитель в сеть устанавливается навечно. Точнее, на весь срок службы защищаемого им участка проводки. Периодически менять нужно будет лишь сменную вставку, габариты которой рассчитаны на возможность подключения только к прибору с конкретной пропускной токовой способностью. Короче, вставка с иными токовыми характеристиками банально не влезет в «гнездо».

Работа и сигнализация о повреждении

Пока по токоведущим жилам проводки течет ток стандартного рабочего значения, варисторный ограничитель безоговорочно пропускает поток. Напряжение на клеммах его главного рабочего органа равнозначно напряжению в сети. Как только клеммы прибора зафиксируют аномалию, аппарат в считанные наносекунды приступает к обязанностям. А если возникнет напряжение, равное по значению напряжению воспламенения прибора, работу ограничителя прервет термический предохранитель.

По задумке разработчиков «жизненный цикл» ограничителей равен 200 тысячам часов. Однако сократить его могут всплески перенапряжения, значение которых ощутимо превышает номинальные величины. Они способны повредить варисторный орган и сжечь предохранитель, в результате чего устройствопросто вообще не сможет осуществлять защиту от перенапряжения. Естественно, «на ощупь» получить информацию о выходе прибора из строя невозможно. Для этого в сменном модуле заботливые производители предусмотрели сигнальный элемент – контрольное окошко.

Визуальная сигнализация зависит от предпочтений изготовителя. Это может быть затемнение контрольного окна или обнаруженный там же яркий красный свет, как у продукции ETITEC. Кстати в ассортименте упомянутой фирмы есть ограничители со звуковым оповещением. В инструкциях обычно подробно описано, по каким признакам нужно определять предстоящую замену вкладыша.

Обратите внимание, что модульность ограничителей в приоритете не только из-за оперативной замены поврежденного элемента, но и из-за возможности получить верные показания при контрольном измерении сопротивления проводки. Достаточно удалить вкладыши из модульных ограничителей, и на исследуемые значения ничто не будет влиять. С блокированными аппаратами измерения проводить бесполезно, достоверных результатов не будет.

Классификация ограничителей и правила монтажа

Защиту объекта от импульсных напастей сооружают по традиционным правилам селективности. Т.е. на вводе устанавливают наиболее мощный прибор, затем ограничитель с меньшей пропускной токовой способностью, далее – еще меньше и т.д. Для загородных строений вполне приемлем двухступенчатый формат защиты, тратиться на более изощренный вариант не к чему.

Чтобы не купить ограничитель с абсолютно ненужными характеристиками, выясним, по каким принципам классифицирует свой товар глубокоуважаемая нами компания ETITEC:

  • Группа А - ограничители, предназначенные для защиты объекта от сверхтоков, вызванных прямым попаданием грозового разряда в сеть или попаданием в объект, расположенный поблизости от воздушной ЛЭП. Без потери работоспособности они смогут вывести в землю импульсы не более 6кВ. Рабочее сопротивление данных устройств не превышает 10 Ом. Устанавливаются снаружи, чаще всего крепятся в точке перехода воздушной линии в кабельное продолжение. Рекомендовано располагать в зоне заземления нулевого защитного проводника PE или его собрата PEN, по совместительству выполняющего функции нулевого защитного и нулевого рабочего проводников.
  • Группа В – ограничители, защищающие от импульсных всплесков в пределах 4 кВ. Устанавливаются они на вводе в строение, если наружное ограничивающее устройство уже есть. Эта группа чаще всего используются в качестве первой ступени защиты частного дома, т.к. предполагается, что предыдущий вариант обязана поставить обслуживающая ЛЭП компания.
  • Группа С – ограничители, сбрасывающие в заземление все, что пропустила защита В, но не более 2,5 кВ. Причем и применяются они преимущественно в паре, особенно, если сооружается двухступенчатая система. Если в двух ступенях ограничения не было необходимости, то приборы группы С справляются с задачами первой защитной преграды. Монтируются в местах распределения электропроводки, в щитках.
  • Группа D – ограничители, предназначенные для защиты потребителей, особо чувствительных к коротким сверхтокам. Оберегают они оборудование, чья устойчивость изоляции не превышает 1,5 кВ. Обойтись без них можно, если нет техники с электронной начинкой. Однако если между устройством С и защищаемым оборудованием больше 15 м, D очень даже пригодится. Установка в сеть ограничителей D допустима только при наличии более высоких степеней защиты. Чувствительные устройства без затруднений выведет из строя малейшее импульсное колебание.

Согласно описанному ранжиру производится селективная установка ограничителей. В преобладающем количестве случаев используется схема B – C, отлично справляющаяся с гашением и отводом наружу электромагнитного негатива в диапазоне 1,5- 2,5 кВ. Если имеются причины для увеличения количества ступеней, то можно начать сооружение защиты с прибора группы А и завершить устройством D.

Обратите внимание. Между ограничителями В и С марки ETITEC расстояние должно быть 10м и более, чтобы на подступах ко второй ступени защиты перенапряжение успело достичь порогового значения. При отсутствии возможности расположить приборы согласно правилам, можно поставить рядом в щиток, но между аппаратами разместить индукционную катушку от того же производителя. Между С и D катушки не надо, но желательно создать между ними интервал в 5 м.

Жаль, что латинскими литерами обозначаются не все ограничители, но принцип классификации у всех производителей приблизительно одинаков. Аналогична схема установки и использования ограничителей, защищающих от скачков напряжения в электросети, равнозначны правила их подбора. Как ориентироваться без буквенных подсказок?

Ориентиры подбора ограничителей

Перед покупкой надо изучить технический паспорт аппарата, в котором указаны:

  • значение максимального рабочего напряжения, при котором устройство способно длительное время работать без отвода излишка энергии в систему заземления;
  • номинальное напряжение – характеристика, указывающая на то, какое перенапряжение при пуске оборудования может действовать на устройство целых 10 сек., не призывая его к «должностным» обязанностям;
  • величина номинального разрядного тока, согласно которой производится классификация, идентичная вышеуказанному варианту.
  • токовая пропускная способность, обозначающая предел снижения сопротивления ограничителя. Проще говоря, какой величины перенапряжение устройство сможет обрабатывать и сбрасывать без собственной поломки;
  • устойчивость к медленно возрастающему напряжению, которая означает способность устройства пропускать аномальный ток без разрушительных последствий;
  • предельный ток разряда, который может «обработать» устройство;
  • устойчивость к «коротышам», успевшим вывести прибор из строя, но не создавшим условий для взрыва оболочки…

В техпаспорте найдется еще ряд значений, полученных расчетным или экспериментальным путем. Изучать их в полном объеме необязательно, большинство пропечатанных параметров предназначено для рабочих испытаний и для настройки промышленных систем.

Резюмируем полученную информацию

Итак, уверенно направляемся в магазин с целью приобретения весьма полезных приборов защиты и учитываем что:

  • для обеспечения автономного строения, не имеющего наружной грозовой защиты, потребуется трехступенчатое сооружение А – В – С, действие которой будет последовательно ограничивать импульсные волны 6 – 4 – 2,5 кВ;
  • при расстоянии от ограничителя С (2,5 кВ) до приемника энергии больше 10ти метров нужен будет еще и прибор D (1,5кВ);
  • для объекта с существующей защитой от атмосферных и сетевых перенапряжений нужен только тандем В – С (4 - 2,5 кВ).

Хочется верить, что наши советы помогут грамотно выбрать приборы для защиты от всего спектра перенапряжений. А вот установку их желательно поручить «бывалым» электрикам. Без опыта лучше не браться за крайне ответственное дело.

Спецификой проблемы грозозащиты на ВЛЗ (воздушных линиях с защищенными проводами) является то, что если провода в изоляции ничем не защищать, то при грозовом перенапряжении и перекрытии изолятора образуется дуга, которой просто некуда перемещаться по проводу.

Соответственно она горит в месте пробоя изоляции до срабатывания защиты на подстанции и аварийного отключения ВЛ. Так как защита в этом случае срабатывает не сразу, то могут произойти следующие последствия:

  • повреждение изоляции СИП-3
  • разрушение самого изолятора на ВЛЗ
  • пережог и обрыв провода

Именно пережог провода является главным условием необходимости применения для СИП-3 устройств грозозащиты.

Дугозащитные рога

Первоначально широко применялась система дугозащитных "рогов". Когда дуга и однофазное замыкание искусственно переводились в двухфазное КЗ с гарантированным отключением ЛЭП.

Однако эта система имеет существенные недостатки:

  • она не защищает изоляцию от перенапряжения
  • не предотвращает отключения линии, а наоборот способствует этому

А между тем для линий с изолированной нейтралью однофазное замыкание не является аварийным режимом, требующим немедленного отключения.

Кроме того, "рога" периодически обгорают и требуют замены.

А при прохождении ВЛЗ через посадки и лесные просеки возможны межфазные замыкания из-за касания веток.

Поэтому для защиты ВЛЗ среднего напряжения 6-20кв от грозовых перенапряжений стали применять специальные устройства - длинно искровые разрядники петлевого типа РДИП.

Длинно искровые разрядники

Эти устройства должны устанавливаться на всем протяжении ВЛ, на подходах к подстанции и кабельным вставкам. Это позволяет исключить перекрытие изоляции на линии и свести на нет негативные последствия индуктированных грозовых перенапряжений.

При этом не должно происходить:

  • аварийных отключений ЛЭП
  • разрушение изоляторов
  • пережог провода
  • плюс обеспечивается защита подстанционного оборудования и кабельных вставок

Длинно искровые разрядники РДИП или PDR-10 (фирмы Niled) должны быть установлены на защищенном участке трассы по одному на каждую опору с циклическим чередованием фаз.

То есть:

  • на опоре №1 подключаем разрядник на фА
  • на опоре №2 на фВ
  • на опоре №3 на фС

Ставить на соседние фазы промежуточной опоры со штыревой изоляцией одновременно два разрядника РДИП не совсем желательно, даже если позволяет место. В противном случае однофазное замыкание может перейти в двухфазное с последующим аварийным отключением ВЛ.

Монтаж РДИП на ВЛ-6-10кв со штыревыми изоляторами

Закрепляете разрядник хомутом на штыре изолятора.

Чтобы выставить зазор между проводом СИП-3 и разрядником, разрешается вручную изменять изгиб петли. Далее монтируется универсальный или прокусывающий зажим. Он ставится с внутренней стороны петли.

Регулируется воздушный зазор. Его величина для ВЛЗ-6-10кв:

  • 40мм от провода СИП
  • 20мм от универсального зажима

Установка на натяжную гирлянду

Первым делом ослабляете крепление плеч разрядника. После чего РДИП отделяется от крепежа.

Кронштейн разворачивается на 180 градусов и одевается только на одно из плеч.

Делается это для того, чтобы петлю разрядники можно было продеть через провод СИП не разрывая его. Теперь оба плеча можно вновь затянуть.

Закрепляете кронштейн крепления на верхней серьге гирлянды и выставляете воздушный зазор. Он замеряется между центральным электродом на разряднике и ближайшей металлической частью арматуры.

Если нет возможности закрепить РДИП за гирлянду, то используют подходящие крепления траверс и укосов.

Разновидности крепежа и расстояния для петлевого разрядника на ВЛЗ-6-10кв:

Угловая анкерная опора Повышенная угловая промежуточная Угловая промежуточная Двухцепная угловая промежуточная Двухцепная анкерная Угловая анкерная Одноцепная угловая промежуточная

Недостатки РДИП

Однако длительный период эксплуатации показывает, что такого типа защита не всегда полностью выполняет свои функции. На некоторых ВЛ число однофазных КЗ может даже увеличиться.

Кроме того, испытания подтверждают что не всегда РДИП может защитить изоляцию на соседних опорах. То есть на последующих двух, где он не установлен по этой фазе. Здесь многое будет зависеть от марки изолятора, расстояния между опорами и уровня перенапряжения.

Даже изоляторы ШФ-20 может перекрыть.

Вот наглядное испытание в лаборатории:

Разрядники РМК-20, MCR

Поэтому в последнее время наряду с устройствами петлевого типа, стали широко применяться разрядники с мультикамерной системой РМК-20 или MCR (Niled).

Он более компактен и удобен в монтаже. По области применения и схеме установки MCR (РМК-20) аналогичен традиционным длинно-искровым. То есть также устанавливается на каждой опоре с чередованием фаз.

Из чего же состоит РМК-20:




Он также может дополняться индикатором срабатывания.

Конструкция кронштейна универсальна и позволяет крепить РМК-20 на промежуточных и анкерных опорах СВ-105,110,164 с несколькими типами изоляции.

Подготовка к монтажу

Перед установкой обязательно произведите внешний осмотр. Разрядный элемент должен быть без трещин, порезов, механических вмятин и т.д. Попробуйте прилагая легкое усилие согнуть элемент. Он должен быть достаточно упругим и сразу же восстанавливать свою изначальную форму.

Если в комплекте идут индикаторы срабатывания, то проверьте целостность стеклянной непрозрачной колбы.

Изначально разрядник поставляется в разобранном виде. Поэтому его необходимо собрать в единую конструкцию. Болтом с гайками и шайбами соединяете кронштейн и мультикамерную систему.

Монтаж РМК-20 на штыревой изолятор

Разрядник своим креплением устанавливается непосредственно на штырь под изолятором. Причем кронштейн изначально должен быть слегка ослаблен для возможности регулировки его положения.

Угол смещения разрядника относительно оси провода должен находиться в пределах 30 градусов.

Также регулируется расстояние от кронштейна до нижней юбки изолятора - 30мм. Делать это лучше всего с помощью шаблона.

После регулировки болты кронштейна можно затягивать. Усилие затяжки 25Нм.

Между проводом СИП-3 и наконечником РМК-20 должен быть воздушный промежуток фиксированной величины. Для этого на провод монтируется универсальный зажим.

Для ВЛЗ с проводами СИП-3 зажим имеет прокалывающий шип.

Важное замечание: если провод фиксируется на изоляторе спиральной вязкой, то шип должен проходить между ее витками, не повреждая саму вязку!

Универсальный зажим затягивается в горизонтальном положении.

Далее чтобы отрегулировать воздушный зазор, слегка откручиваете болтовое крепление и отводите разрядник в нужную сторону. Величину воздушного промежутка между концевым сферическим электродом и зажимом на СИП-3 прощу всего выставить по шаблону.

Этот зазор должен быть в следующих пределах:

  • для ВЛ-6-10кв - 40-60мм
  • для ВЛ-20кв - 50-70мм

Обратите внимание, что изгибать разрядник без ослабления его кронштейна запрещается. Иначе можете повредить внутренний армирующий элемент.

Разрядник закрепляется сверху на серьге подвесного изолятора.

Угол смещения элемента разрядника от оси провода - 30 градусов.

Выставив угол, кронштейн затягивается. Далее регулируете зазоры. Расстояние по горизонтали между юбкой верхнего изолятора и электродом разрядника должно быть примерно 30мм. Выставив его затягиваете все гайки.

Универсальный зажим здесь устанавливается максимально близко, вплотную к поддерживающему зажиму гирлянды.

При монтаже индикатора срабатывания соблюдайте его вертикальное расположение. В то же время он должен располагаться под сферическим электродом разрядника.

На проводе, напротив сферического наконечника, сразу за натяжным зажимом, закрепляется универсальный, либо индикатор срабатывания.

При этом он не должен быть на расстоянии ближе чем 50мм от края юбки изолятора.

Воздушный зазор до элемента самого РМК-20 здесь находится в более широких величинах - 50-100мм.

Разрядники: назначение, конструкция, принцип действия. Вентильные и трубчатые разрядники. Нелинейные ограничители перенапряжения (ОПН): назначение, конструкция, принцип действия. Условия выбора

Коммуникация, связь, радиоэлектроника и цифровые приборы

Нелинейные ограничители перенапряжения ОПН: назначение конструкция принцип действия. В результате пробоя в трубке возникает интенсивная газогенерация и через выхлопное отверстие образуется продольное дутье достаточное для погашения дуги. ОПН Ограничитель перенапряжения нелинейный ОПН это разрядник без искровых промежутков. Активная часть ОПН состоит из последовательного набора варисторов.

28. Разрядники: назначение, конструкция, принцип действия. Вентильные и трубчатые разрядники. Нелинейные ограничители перенапряжения (ОПН): назначение, конструкция, принцип действия. Условия выбора.

Разря́дник — электрический аппарат , предназначенный для ограничения перенапряжений в электротехнических установках и электрических сетях .

В электрических сетях часто возникают импульсные всплески напряжения , вызванные коммутациями электроаппаратов, атмосферными разрядами или иными причинами. Несмотря на кратковременность такого перенапряжения, его может быть достаточно для пробоя изоляции и, как следствие, короткого замыкания , приводящего к разрушительным последствиям. Для того, чтобы устранить вероятность короткого замыкания, можно применять более надежную изоляцию, но это приводит к значительному увеличению стоимости оборудования. В связи с этим в электрических сетях целесообразно применять разрядники.

Разрядник состоит из двух электродов и дугогасительного устройства.

Электроды

Один из электродов крепится на защищаемой цепи, второй электрод заземляется . Пространство между электродами называется искровым промежутком . При определенном значении напряжения между двумя электродами искровой промежуток пробивается , снимая тем самым перенапряжение с защищаемого участка цепи. Одно из основных требований, предъявляемых к разряднику — гарантированная электрическая прочность при промышленной частоте (разрядник не должен пробиваться в нормальном режиме работы сети).

Дугогасительное устройство

После пробоя импульсом искровой промежуток достаточно ионизирован , чтобы пробиться фазным напряжением нормального режима, в связи с чем возникает короткое замыкание и, как следствие, срабатывание устройств РЗиА , защищающих данный участок. Задача дугогасительного устройства — устранить это замыкание в наиболее короткие сроки до срабатывания устройств защиты.

Виды разрядников

Трубчатый разрядник

Трубчатый разрядник представляет собой дугогасительную трубку из полихлорвинила , с разных концов которой закреплены электроды. Один электрод заземляется, а второй располагается на небольшом расстоянии от защищаемого участка (расстояние регулируется в зависимости от напряжения защищаемого участка). При возникновении перенапряжения пробиваются оба промежутка: между разрядником и защищаемым участком и между двумя электродами. В результате пробоя в трубке возникает интенсивная газогенерация, и через выхлопное отверстие образуется продольное дутье, достаточное для погашения дуги.

Вентильный разрядник

Вентильный разрядник состоит из двух основных компонентов: многократного искрового промежутка (состоящего из нескольких однократных) и рабочего резистора (состоящего из последовательного набора вилитовых дисков). Многократный искровой промежуток последовательно соединен с рабочим резистором . В связи с тем, что вилит меняет характеристики при увлажнении, рабочий резистор герметично закрывается от внешней среды. Во время перенапряжения многократный искровой промежуток пробивается, задача рабочего резистора — снизить значение сопровождающего тока до величины, которая сможет быть успешно погашена искровыми промежутками. Вилит обладает особенным свойством — его сопротивление нелинейно — оно падает с увеличением значения силы тока. Это свойство позволяет пропустить больший ток при меньшем падении напряжения. Благодаря этому свойству вентильные разрядники и получили свое название. Среди прочих преимуществ вентильных разрядников следует отметить бесшумность срабатывания и отсутствие выбросов газа или пламени.

Магнитовентильный разрядник (РВМГ)

РВМГ состоит из нескольких последовательных блоков с магнитным искровым промежутком и соответствующего числа вилитовых дисков. Каждый блок магнитных искровых промежутков представляет собой поочередное соединение единичных искровых промежутков и постоянных магнитов , заключенное в фарфоровый цилиндр.

При пробое в единичных искровых промежутках возникает дуга, которая за счет действия магнитного поля , создаваемого кольцевым магнитом, начинает вращаться с большой скоростью, что обеспечивает более быстрое, по сравнению с вентильными разрядниками, дугогашение.

ОПН

Ограничитель перенапряжения нелинейный (ОПН) — это разрядник без искровых промежутков. Активная часть ОПН состоит из последовательного набора варисторов . Принцип действия ОПН основан на том, что проводимость варисторов нелинейно зависит от приложенного напряжения. В нормальном режиме ОПН не пропускает ток, но как только на участке сети возникает перенапряжение, сопротивление ОПН резко снижается, чем и обуславливается эффект защиты от перенапряжения. После прохождения разряда через ОПН, его сопротивление опять возрастает. Переход из «закрытого» в «открытое» состояния занимает меньше 1 наносекунды (в отличие от разрядников с искровыми промежутками, у которых это время равняется нескольким микросекундам). Кроме быстроты срабатывания ОПН обладает еще рядом преимуществ. Одним из них является стабильность характеристики варисторов после неоднократного срабатывания вплоть до окончания указанного времени эксплуатации, что, кроме прочего, устраняет необходимость в эксплуатационном обслуживании.

Обозначение

На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727—68.
1. Общее обозначение разрядника
2. Разрядник трубчатый
3. Разрядник вентильный и магнитовентильный
4. ОПН


А также другие работы, которые могут Вас заинтересовать

17121. Розробка програм з використанням класів 112 KB
Лабораторна робота № 30 Тема: Розробка програм з використанням класів Ціль роботи: вивчити синтаксичні конструкції для оголошення визначення і використання класів. Розібратися з особливостями використання класів у мові С. Обладнання: ПКПО Borland C Теоретичні відо...
17122. Використання конструкторів і деструкторів 58 KB
Лабораторна робота № 31 Тема: Використання конструкторів і деструкторів Ціль роботи: вивчити і навчитися використовувати механізм роботи з конструкторами і деструкторами. Обладнання: ПКПО Borland C Теоретичні відомості Конструктори і деструктори Існує кільк
17123. Використання спадкування для створення ієрархії класів 80.5 KB
Лабораторна робота № 32 Тема: Використання спадкування для створення ієрархії класів Ціль роботи: одержати навички у використанні спадкування для створення похідних класів при простому спадкуванні. Обладнання: ПКПО Borland C Теоретичні відомості При оголошенні п...
17124. Використання віртуальних і покажчиків для роботи з об"єктами класів 51.5 KB
Лабораторна робота № 33 Тема: Використання віртуальних і покажчиків для роботи з об"єктами класів Ціль роботи: вивчити і навчитися використовувати віртуальні функції в мові С. Обладнання: ПКПО Borland C Теоретичні відомості Віртуальні функціїчлени з"являються в к...
17125. Задачі курсу. Історичний огляд розвитку обчислювальної техніки. Операційна система (ОС) та її функції. Структура ОС 72 KB
Лекція №1 Тема: Задачі курсу. Історичний огляд розвитку обчислювальної техніки. Операційна система ОС та її функції. Структура ОС. План Мета і задачі курсу. Призначення операційних систем. Функції операційних систем. Поняття операційного середовища. ...
17126. Структура ОС MS – DOS. Основні команди MS – DOS 162.5 KB
Лекція №2 Тема: Структура ОС MS DOS. Основні команди MS DOS. План Історія й архітектура. Керування програмами. Керування пам"яттю. Введеннявиведення і файлова система. Структура MS DOS. Історія й архітектура ОС MS DOS була розроблена фірмою Microso...
17127. Призначення, створення і виконання командного файлу в ОС Windows та Ms-Dos 45.5 KB
Лекція №3 Тема: Призначення створення і виконання командного файлу в ОС Windows та MsDos. План Призначення командних файлів. Приклади застосування. Формальні параметри. Командні файли в ОС Windows. Команда ECHO Управління індикацією на екрані вм...
17128. Файлові оболонки для ОС MS – DOS та файлові менеджери для ОС Windows 130.5 KB
Лекція №4 Тема: Файлові оболонки для ОС MS DOS та файлові менеджери для ОС Windows. План Можливості Norton Commander. Зміст панелей Norton Commander. Використовування функціональних клавіш. Меню команд користувача. файлові менеджери для ОС Windows. ПРОГРАМАОБОЛ
17129. ОС Linux. Архітектура ОС Linux 78 KB
Лекція №5 Тема: ОС Linux. Архітектура ОС Linux. План Архітектура Linux. Модулі ядра. Система файлів і каталоги. Імена файлів і каталогів. Розширення та дерево каталогів. Архітектура Linux В ОС Linux можна виділити три основні частини: ядро яке реа

Назначение разрядников

Газонаполненные разрядники - это приборы с двумя или тремя электродами, предназначенные для защиты электронной аппаратуры от случайных перенапряжений или для формирования мощных электрических импульсов в микро- и наносекундном диапазонах. Основная особенность вольт-амперной характеристики двухэлектродного защитного разрядника - наличие порогового напряжения, ниже которого разрядник выступает как изолятор, а выше - как низкоомный проводник.

Коммутационные разрядники до перехода в проводящее состояние эквивалентны разомкнутому ключу. В режим низкоомного проводника они переходят при увеличении напряжения выше порогового значения или при поступлении импульса напряжения на управляющий электрод (в управляемых разрядниках). Из проводящего состояния в непроводящее защитные и коммутационные разрядники возвращаются только после снижения напряжения между основными электродами до определенного значения.

В проводящем состоянии из-за малого собственного сопротивления разрядники не определяют величину тока. Обычно она ограничена активным (или индуктивным) сопротивлением элементов цепи. Характерные параметры разрядников: пороговое напряжение - от 70 В до 300 кВ, допустимый ток - до 150 кА. Для некоторых типов разрядников (защита цепей, находящихся под сравнительно высоким рабочим напряжением) в качестве параметров указывается напряжение, при котором разрядник возвращается в непроводящее состояние. Характерные значения напряжения - от 50 В до 8 кВ. Важными параметрами коммутирующих разрядников являются максимально допустимая частота следования импульсов (10 - 100 Гц) и срок службы, который характеризуют гарантированным числом коммутаций (106 - 107) или зарядом, коммутируемым за весь период работы (103 - 104 Кл - «суммарный заряд»).

Устройство и принцип действия

Конструкция типичного разрядника представляет собой два плоских дисковых электрода, разделенных диэлектрической вакуумной оболочкой из керамики (рис. 1). Приборы обычно наполняются инертными газами и их смесями до давления от 102 до 106 Па. Характерные значения параметров газоразрядного промежутка: расстояние - до 1 см, площадь - порядка 1 см Минимальные габариты 8,26 мм (диаметр и высота разрядников «кнопочной» конструкции), максимальные - 120220 мм. В проводящее состояние разрядники переходят в результате возникновения газового разряда. В зависимости от назначения прибора разряд может быть тлеющим (на миллиамперный диапазон токов), дуговым (амперы и килоамперы) или искровым (килоамперы).

Рис. 1.

Основные физические процессы в тлеющем разряде: развитие электронных лавин, выход электронов из катода под действием ионов и фотонов, перераспределение потенциала в промежутке за счет ионного пространственного заряда, приводящее к формированию узкой прикатодной области с большой напряженностью поля. Характерные величины напряжения горения разряда - сотни вольт.

В дуговом разряде определяющую роль играет термоэмиссия электронов с поверхности катода, разогретого ионной бомбардировкой. Дуговому разряду в сравнении с тлеющим присущи более низкие значения напряжения горения - десятки вольт. Для разрядников характерна «неустановившаяся форма дугового разряда», при которой до высокой температуры быстро разогревается не весь катод, а лишь его микроучасток, в пределах которого возможны плавление и испарение вещества.

Разряд в таких условиях может развиваться в расширяющемся облаке пара материала катода. Для обеспечения необходимой долговечности разрядников в таких случаях особое внимание уделяется выбору катодного материала. Основные требования к нему - низкая работа выхода электронов и сравнительно малая теплота испарения. Одним из распространенных материалов является алюмосиликат цезия, заполняющий поры прессованной губки из никелевого порошка. В сильноточных (до 150 кА) коммутационных разрядниках катод выполняется в виде медной пленки, нанесенной на подслой молибдена.

Искровой разряд развивается при очень высокой интенсивности размножения электронов в лавине, с существенной генерацией фотонов, способных ионизировать молекулы газа. Разряд формируется в виде «стримеров», визуально наблюдаемых как искры. Развитию стримеров физически соответствует быстрое перемещение фронта ионизированного газа, обусловленное тем, что после ухода на анод части электронов лавины положительный пространственный заряд «втягивает» в основной разрядный канал «дочерние» электронные лавины, зарождающиеся перед фронтом в результате фотоионизации газовых молекул.

Достоинства разрядников: широкий диапазон значений рабочих напряжений и токов, устойчивость к токовым перегрузкам, простота конструкции и технологии изготовления, способность нормально функционировать в условиях радиации и высокой (до 300 оС) температуры окружающей среды. Достоинства определяют широкое применение разрядников: в настоящее время выпускается около 50 типов приборов. Обозначение типов обычно включает букву «Р» и номер разработки, например неуправляемый защитный разрядник Р-150. В обозначении некоторых типов указываются две буквы и номер. Например, РУ-73 - управляемый трехэлектродный разрядник; РО-49 - разрядник обостритель для рентгеновских приборов; РК-160 - коммутирующий разрядник.